×

Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control. (English) Zbl 1242.92036

Summary: A delayed oncolytic virus dynamics with continuous control is investigated. The local stability of the infected equilibrium is discussed by analyzing the associated characteristic transcendental equation. By choosing the delay \(\tau\) as a bifurcation parameter, we show that Hopf bifurcations can occur as the delay \(\tau\) crosses some critical values. Using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. Numerical simulations are carried out to support the theoretical results.

MSC:

92C50 Medical applications (general)
34K18 Bifurcation theory of functional-differential equations
34K35 Control problems for functional-differential equations
92C60 Medical epidemiology
37N25 Dynamical systems in biology
34C23 Bifurcation theory for ordinary differential equations
93C95 Application models in control theory
Full Text: DOI

References:

[1] Wodarz, D.: Viruses as antitumor weapons: Defining conditions for tumor remission. Cancer Res. 61, 3501–3507 (2001)
[2] Novozhilov, A.S., Berezovskaya, F.S., Koonin, E.V., Karev, G.P.: Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biol. Direct 1, 6 (2006) · doi:10.1186/1745-6150-1-6
[3] Karev, G.P., Novozhilov, A.S., Koonin, E.V.: Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biol. Direct 1, 30 (2006) · doi:10.1186/1745-6150-1-30
[4] Pillisa, L.D., Fister, K.R., Gu, W.Q., Collins, C., Daub, M., Gross, D., Moore, J., Preskill, B.: Mathematical model creation for cancer chemo-immunotherapy. Comput. Math. Methods Med. 10, 165–184 (2009) · Zbl 1312.92026 · doi:10.1080/17486700802216301
[5] Wodarz, D.: Use of oncolytic viruses for the eradication of drug-resistant cancer cells. J. R. Soc. Interface 6, 179–186 (2009) · doi:10.1098/rsif.2008.0191
[6] Komarova, N.L., Wodarz, D.: ODE models for oncolytic virus dynamics. J. Theor. Biol. 263, 530–543 (2010) · doi:10.1016/j.jtbi.2010.01.009
[7] Wein, L.M., Wu, J.T., Kirn, D.H.: Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 15, 1317–1324 (2003)
[8] Tao, Y.S., Guo, Q.: The competitive dynamics between tumor cells, a replication-competent virus and an immune response. J. Math. Biol. 51, 37–74 (2005) · Zbl 1066.92035 · doi:10.1007/s00285-004-0310-6
[9] Tao, Y.S., Yoshida, N., Guo, Q.: Nonlinear analysis of a model of vascular tumour growth and treatment. Nonlinearity 17, 867–895 (2004) · Zbl 1073.35215 · doi:10.1088/0951-7715/17/3/008
[10] Vähä-Koskela, M.J.V., Heikkilä, J.E., Hinkkanen, A.E.: Oncolytic viruses in cancer therapy. Cancer Lett. 254, 178–216 (2007) · doi:10.1016/j.canlet.2007.02.002
[11] Nowak, M.A., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, New York (2000) · Zbl 1101.92028
[12] Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977) · Zbl 0352.34001
[13] Beretta, E., Kuang, Y.: Geometric stability switch criteria in delay differential systems with delay-dependent parameters. SIAM J. Math. Anal. 33, 1144–1165 (2002) · Zbl 1013.92034 · doi:10.1137/S0036141000376086
[14] Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) · Zbl 0474.34002
[15] Diekmann, O., van Gils, S.A., Verduyn-Lunel, S.M., Walther, H.-O.: Delay Equations, Functional-, Complex and Nonlinear Analysis. Appl. Math. Sciences Series, vol. 110. Springer, New York (1995) · Zbl 0826.34002
[16] Fofana, M.S.: Delay dynamical systems and applications to nonlinear machine-tool chatter. Chaos Solitons Fractals 17, 731–747 (2003) · Zbl 1103.34338 · doi:10.1016/S0960-0779(02)00407-1
[17] Qu, Y., Wei, J.J.: Bifurcation analysis in a time-delay model for prey–predator growth with stage-structure. Nonlinear Dyn. 49, 285–294 (2007) · Zbl 1176.92056 · doi:10.1007/s11071-006-9133-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.