×

Generalized skew derivations with power central values on Lie ideals. (English) Zbl 1242.16038

Let \(R\) be a prime ring with center \(Z\) and extended centroid \(C\), and let \(\beta\) be an automorphism of \(R\). An additive map \(\delta\colon R\to R\) is called a \(\beta\)-derivation if \(\delta(xy)=\delta(x)y+\beta(x)\delta(y)\) for all \(x,y\in R\); an additive map \(f\colon R\to R\) is called a right generalized \(\beta\)-derivation if there exists a \(\beta\)-derivation \(\delta\) such that \(f(xy)=f(x)y+\beta(x)\delta(y)\) for all \(x,y\in R\).
It is proved that if \(L\) is a noncommutative Lie ideal of \(R\) and \(f\) is a right generalized \(\beta\)-derivation such that \(f(x)^n\in Z\) for all \(x\in L\) and some fixed positive integer \(n\), then \(f=0\) or \(\dim_CRC=4\). This result generalizes several known results for derivations, which are discussed in the introduction.

MSC:

16W25 Derivations, actions of Lie algebras
16N60 Prime and semiprime associative rings
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16R60 Functional identities (associative rings and algebras)
Full Text: DOI

References:

[1] Carini L., Boll. Un. Mat. Ital. 6 pp 723– (1985)
[2] Chang J. C., Chinese J. Math. 15 pp 163– (1987)
[3] Chang J. C., Chinese J. Math. 22 pp 349– (1994)
[4] Chang J. C., Bull. Inst. Math., Academia Sinica 23 pp 295– (1995)
[5] Chang J. C., Taiwanese J. Math 7 pp 103– (2003)
[6] Chang J. C., Taiwanese J. Math. 13 pp 1111– (2009)
[7] Chang , J. C. ( 2009 ). Generalized skew derivations having nilpotent values on Lie ideals. Monatsh Math. DOI 10.1007/s00605-009-0136-9, Published online: 01 August (2009) .
[8] DOI: 10.1090/S0002-9939-1988-0947646-4 · doi:10.1090/S0002-9939-1988-0947646-4
[9] DOI: 10.1016/0021-8693(92)90023-F · Zbl 0773.16007 · doi:10.1016/0021-8693(92)90023-F
[10] DOI: 10.1006/jabr.1993.1181 · Zbl 0793.16014 · doi:10.1006/jabr.1993.1181
[11] DOI: 10.1016/j.jalgebra.2003.12.032 · Zbl 1073.16021 · doi:10.1016/j.jalgebra.2003.12.032
[12] DOI: 10.1007/BF02844306 · Zbl 0482.16030 · doi:10.1007/BF02844306
[13] Herstein I. N., Topics in Ring Theory (1969) · Zbl 0232.16001
[14] DOI: 10.1016/0021-8693(79)90102-9 · Zbl 0436.16014 · doi:10.1016/0021-8693(79)90102-9
[15] Herstein I. N., Derivations of Prime Rings Having Power Central Values (1982) · Zbl 0503.16002
[16] Kharchenko , V. K. ( 1975 ). Generalized identities with automorphisms.Algebra i Logika14:215–237; Engl. Transl: Algebra and Logic 14:132–148 .
[17] DOI: 10.1090/S0002-9939-1990-0984803-4 · doi:10.1090/S0002-9939-1990-0984803-4
[18] DOI: 10.1080/00927879908826462 · Zbl 0924.16017 · doi:10.1080/00927879908826462
[19] DOI: 10.1080/00927879908826682 · Zbl 0946.16026 · doi:10.1080/00927879908826682
[20] Liu , K. S.(2006). Differential identities and constants of algebraic automorphisms in prime rings. Ph.D. thesis, National Taiwan University, 2006, June.
[21] DOI: 10.1016/0021-8693(69)90029-5 · Zbl 0175.03102 · doi:10.1016/0021-8693(69)90029-5
[22] Xu X. W., Chinese Ann. Math. Ser. A 28 pp 131– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.