×

Orientational anisotropy and plastic spin in finite elasto-plasticity. (English) Zbl 1236.74033

Summary: The present paper deals with the orientational anisotropy, in the multiplicative elasto-plastic models with non-zero spin and initial orthotropic anisotropy, under the supposition of small elastic strains, while elastic rotations and plastic deformations are large. A new rate form of the model is derived in the Eulerian setting. The evolution in time for the Cauchy stress, plastic part of deformation, tensorial hardening variables and elastic rotations involves the objective derivatives associated with the same elastic spin. A common plastic spin is allowed in the model as direct consequences that follows from the adopted constitutive framework of finite elasto-plastic materials with isoclinic configurations and internal variables. In this model the orientation of the orthotropy directions are characterized in terms of the Euler angles, which replace the elastic rotations. We provided a constitutive framework valuable for the description of the evolution of the orthotropy orientation during a deformation process whose principal directions are different from the orthotropic axes. Only when the plastic spin is non-vanishing, the orientational anisotropy could develop. We proved that only when there exists an initial orthotropic axis which is orthogonal to the sheet, the rotation of the orthotropic axes remains in plane, i.e. in the plane of the sheet, during a plane deformation process. We investigate the effects of three different analytical expressions for the common plastic spin. We make comparisons with the models and the numerical results already provided in the literature.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E10 Anisotropy in solid mechanics
Full Text: DOI

References:

[1] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E.: Linear transformation-based anisotropic yield functions, Int. J. Plasticity 21, 1009-1039 (2005) · Zbl 1161.74328 · doi:10.1016/j.ijplas.2004.06.004
[2] Beju, I., Sóos, E., Teodorescu, P., 1983. Euclidean tensor calculus with applications. In: Tehnica Bucuresti, (Ed.), Abacus Press, Tunbridge, Kent, England. · Zbl 0526.53010
[3] Cleja-&tcedil, S.; Igoiu: Large elasto-plastic deformations of materials with relaxed configurations – I. Constitutive assumptions, II. Role of the complementary plastic factor, Int. J. Eng. sci., 273-284 (1990) · Zbl 0727.73028
[4] Cleja-&tcedil, S.; Igoiu: Nonlinear elasto-plastic deformations of transversely isotropic material and plastic spin, Int. J. Eng. sci. 38, 737-763 (2000) · Zbl 1210.74032
[5] Cleja-&tcedil, S.; Igoiu: Orthotropic \(\Sigma \)-models in finite elasto-plasticity, Rev. roum. Math. pures appl. 45, 219-227 (2000)
[6] Cleja-Ţigoiu, S., 2007. Anisotropic elasto-plastic model for large metal forming deformation processes. In: Modeling and Experiments in Material Forming. International Journal of Forming Processes, vol. 10, pp. 67 – 87.
[7] Cleja-&tcedil, S.; Igoiu; Maugin, G. A.: Eshelby’s stress tensors in finite elastoplasticity, Acta mech. 139, 231-249 (2000) · Zbl 0951.74009
[8] Cleja-&tcedil, S.; Igoiu; Soós, E.: Material symmetry of elastoplastic materials with relaxed configurations, Rev. roum. Math. pures appl. 34, 513-521 (1989) · Zbl 0676.73002
[9] Cleja-&tcedil, S.; Igoiu; Soós, E.: Elastoplastic models with relaxed configurations and internal state variables, Appl. mech. Rev. 43, 131-151 (1990)
[10] Dafalias, Y. F.: The plastic spin, J. appl. Mech. trans. ASME 52, 865-871 (1985) · Zbl 0587.73052 · doi:10.1115/1.3169160
[11] Dafalias, Y. F.: On multiple spins and texture development. Case study: kinematic and orthotopic hardening, Acta mech. 100, 171-194 (1993) · Zbl 0777.73015 · doi:10.1007/BF01174788
[12] Dafalias, Y. F.: Orientational evolution of plastic orthotropy in sheet metals, J. mech. Phys. solids 48, 2231-2255 (2000) · Zbl 0991.74020 · doi:10.1016/S0022-5096(00)00014-4
[13] Dafalias, Y. F.; Rashid, M. M.: The effect of the plastic spin on anisotropic material behavior, Int. J. Plasticity 5, 227-246 (1989) · Zbl 0695.73015 · doi:10.1016/0749-6419(89)90014-4
[14] Hill, R.: The mathematical theory of plasticity, (1950) · Zbl 0041.10802
[15] Kim, K. H.; Yin, J. J.: Evolution of anisotropy under plane state, J. mech. Phys. solids 45, 841-845 (1997)
[16] Kuroda, M.; Tvergaard, V.: Forming diagrams for anisotropic metal sheets with different yield criteria, Int. J. Solids struct. 37, 5037-5059 (2000) · Zbl 0963.74055 · doi:10.1016/S0020-7683(99)00200-0
[17] Liu, I-Shih: On representations of anisotropic invariants, Int. J. Eng. sci. 40, 1099-1109 (1982) · Zbl 0504.73001 · doi:10.1016/0020-7225(82)90092-1
[18] Mandel, J.: Plasticité classique et viscoplasticité, (1972) · Zbl 0285.73018
[19] Phillips, A.; Liu, C. S.; Justusson, J. W.: An experimental investigation of yield surfaces at elevated temperatures, Acta mech. 14, 119-146 (1972)
[20] Teodosiu, C., 1970. A dynamic theory of dislocations and its applications to the theory of the elastic – plastic continuum. In: Simmons, J.A., de Witt, R., Bullough, R., (Eds.), Fundamental Aspects of Dislocation Theory. National Bureau Standards (US), Specical Publication 317, II, 1970. pp. 837 – 876.
[21] Wang, C. C.: A new representation theorem for isotropic functions, Arch. ration. Mech. anal. 36, 166-223 (1970) · Zbl 0327.15030 · doi:10.1007/BF00272241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.