×

\(SL_k\)-tilings of the plane. (English) Zbl 1236.13018

\(SL_k\)-tilings are bi-infinite arrays \((a_{ij})_{i,j \in \mathbb{Z}}\) with values \(a_{ij} \in \mathbb{K}\) having the property that all \(k \times k\) adjacent minors are equal to one. This paper introduces and initiates the study of such objects. This notion is a natural generalization of \(SL_2\)-tilings defined by I. Assem, C. Reutenauer and D. Smith [Adv. Math. 225, No. 6, 3134–3165 (2010; Zbl 1275.13017)] in their study of friezes and their relation to cluster algebras and T-systems.
The \(SL_k\)-tilings of minimal rank \(k\) are of particular interest and are called tame. An explicit construction of all tame \(SL_k\)-tilings is given in terms of certain linearization coefficients. Several nice properties are shown, in particular the existence for every tame \(SL_k\)-tiling, of a dual \(SL_k\)-tiling obtained by computing the \((k-1)\times (k-1)\) minors. The authors also construct partial \(SL_k\)-tilings from admissible paths in \(\mathbb{Z} \times \mathbb{Z}\). Under certain conditions, these partial tilings may be extended in a unique way to complete tame \(SL_k\)-tilings, whose values exhibit Laurent phenomenon.
The main application given in the article concerns the frieze patterns of Coxeter, which are realized in terms of \(SL_2\)-tilings. New proofs of the main results of J. H. Conway and H. S. M. Coxeter [Math. Gaz. 57, 87–94 (1973; Zbl 0285.05028)] such as periodicity and glided-symmetry of frieze patterns are rederived in this context. Some properties of \(SL_k\)-tilings are also put in relation with T-systems appearing in mathematical physics.

MSC:

13F60 Cluster algebras
15A15 Determinants, permanents, traces, other special matrix functions
11C20 Matrices, determinants in number theory
05A05 Permutations, words, matrices
05E10 Combinatorial aspects of representation theory

References:

[1] I. Assem, C. Reutenauer and D. Smith, Friezes , Adv. Math. 225 (2010), 3134-3165. · Zbl 1275.13017 · doi:10.1016/j.aim.2010.05.019
[2] V. Bazhanov and N. Reshetkhin, Restricted solid-on-solid models connected with simply-laced algebras and conformal field theory , J. Phys. A23 (1990), 1477-1492. · Zbl 0712.17024 · doi:10.1088/0305-4470/23/9/012
[3] D. M. Bressoud, Proofs and confirmations, the story of the alternating matrix conjecture , Cambridge Univ. Press, 1999. · Zbl 0944.05001
[4] J. Conway and H. S. M. Coxeter, Triangulated polygons and frieze patterns , Math. Gazette 57 (1973), 87-94, 175-183. JSTOR: · Zbl 0288.05021 · doi:10.2307/3615561
[5] C. M. Cordes and D. P. Roselle, Generalized frieze patterns , Duke Math. J. 39 (1972), 637-648. · Zbl 0258.05024 · doi:10.1215/S0012-7094-72-03970-1
[6] H. S. M. Coxeter, Frieze patterns , Acta Arith. XVIII (1971), 297-310. · Zbl 0217.18101
[7] P. Di Francesco, The solution of the arbitrary \(A_r\) \(T\)-system for arbitrary boundary , Electron. J. Combin. 17 (2010), Research Paper 89, 43 pp. · Zbl 1230.05153
[8] P. Di Francesco and R. Kedem, Positivity of the \(T\)-system cluster algebra , Electron. J. Combin. 16 (2009), Research Paper 140, 39 pp. · Zbl 1229.13019
[9] P. Di Francesco and R. Kedem, Q-systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property , Lett. Math. Phys. 89 (2009), 183-216. · Zbl 1195.81077 · doi:10.1007/s11005-009-0354-z
[10] R. C. L. Dodgson, Condensation of determinants, being a brief method for computing their arithmetical values , Proc. Roy. Soc. XV (1866), 150-155.
[11] S. Fomin and A. Zelevinsky, The Laurent phenomenon , Adv. Appl. Math. 28 (2002), 119-144. · Zbl 1012.05012 · doi:10.1006/aama.2001.0770
[12] A. Kuniba, A. Nakanishi and J. Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory , Int. J. Modern Physics A9 (1994), 5215-5266. · Zbl 0985.82501 · doi:10.1142/S0217751X94002119
[13] I. Gessel and G. X. Viennot, Binomial determonants, paths, and hook lengths formulae , Adv. Math. 58 (1985), 300-321. · Zbl 0579.05004 · doi:10.1016/0001-8708(85)90121-5
[14] J. Propp, The combinatorics of frieze patterns and Markoff numbers , Proceedings of FPSAC’06, available at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.