×

Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. (English) Zbl 1231.74148

Summary: The present paper highlights the idea that the mass redistribution technique introduced by H. B. Khenous and co-workers [C. R., Math., Acad. Sci. Paris 342, No. 10, 791–796 (2006; Zbl 1090.74061); Lecture Notes in Applied and Computational Mechanics 27, 31–38 (2006; Zbl 1194.74417)], for elastodynamics with impact, can be reinterpreted as a mixed formulation in displacements and velocities in which a special compatibility condition is enforced. Such a formulation opens the route to various extensions and to variational integrators for impact problems, potentially with variational time adaption. Those ideas are exemplified in the design of such integrators and various mass redistribution schemes.

MSC:

74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
74M20 Impact in solid mechanics
Full Text: DOI

References:

[1] Armero, F.; Petöcz, E., Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems, Comput. Methods Appl. Mech. Engrg., 158, 269-300 (1998) · Zbl 0954.74055
[2] Ballard, P.; Basseville, E., Existence and uniqueness for dynamical unilateral contact with coulomb friction: a model problem, M2AN, 39, 1, 59-77 (2005) · Zbl 1089.34010
[3] Bayada, G.; Chambat, M.; Lhalouani, K.; Sassi, T., Eléments finis avec joints pour des problèmes de contact avec frottement de Coulomb non local, C.R. Acad. Sci. Paris Anal. Numér., 325, 1323-1388 (1997) · Zbl 0898.73059
[4] Ben Belgacem, F., A stabilized domain decomposition method with non-matching grids for the Stokes problem in three dimensions, SIAM J. Numer. Anal., 42, 2, 667-685 (2004) · Zbl 1159.76359
[5] Ben Belgacem, F.; Hild, P.; Laborde, P., Approximation of the unilateral contact problem by the mortar finite element method, C.R. Acad. Sci. Paris Sér. I. Math., 324, 123-127 (1997) · Zbl 0872.65057
[6] Ben Belgacem, F.; Hild, P.; Laborde, P., Extension of the mortar finite element to a variational inequality modeling unilateral contact, Math. Models Appl. Sci., 9, 287-303 (1999) · Zbl 0940.74056
[9] Whalen, T. M.; Archer, G. C., Development of rotationally consistent diagonal mass matrices for plate and beam elements, Comput. Methods Appl. Mech. Engrg., 194, 675-689 (2005) · Zbl 1112.74498
[10] Taylor, R. L.; Goudreau, G. L., Evaluation of numerical integration methods in the elastodynamics, Comput. Methods Appl. Mech. Engrg., 2, 69-97 (1972) · Zbl 0255.73085
[11] Gonzalez, O., Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods Appl. Mech. Engrg., 190, 13-14, 1763-1783 (2000) · Zbl 1005.74075
[13] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration (2002), Springer-Verlag · Zbl 0994.65135
[15] Hauret, P.; Le Tallec, P., Energy-controlling time integration methods for nonlinear elastodynamics, viscoelasticity and impact, Comput. Methods Appl. Mech. Engrg., 195, 4890-4916 (2006) · Zbl 1177.74379
[16] Hauret, P.; Le Tallec, P., A discontinuous stabilized mortar method for general 3d elastic problems, Comput. Methods Appl. Mech. Engrg., 196, 49, 4881-4900 (2007) · Zbl 1173.74424
[17] Laborde, P.; Khenous, H. B.; Renard, Y., Comparison of two approaches for the discretization of elastodynamic contact problems, CRAS Math., 342, 10, 791-796 (2006) · Zbl 1090.74061
[18] Laborde, P.; Khenous, H. B.; Renard, Y., On the discretization of contact problems in elastodynamics, Lect. Notes Appl. Comput. Mech., 27, 31-38 (2006) · Zbl 1194.74417
[19] Hild, P., Numerical implementation of two nonconforming finite element methods for unilateral contact, Comput. Methods Appl. Mech. Engrg., 184, 1, 99-123 (2000) · Zbl 1009.74062
[21] Hueber, S.; Wohlmuth, B. I., A primal dual active set strategy for nonlinear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194, 3147-3166 (2005) · Zbl 1093.74056
[22] Hughes, T. J.R., Analysis of transient algorithms with particular reference to stability behavior, Comput. Methods Trans. Anal., 1, 68-155 (1983) · Zbl 0547.73070
[23] Hulbert, G. M.; Chung, J., A family of single-step Houbolt time integration algorithms for structural dynamics, Comput. Methods Appl. Mech. Engrg., 118, 1-11 (1994) · Zbl 0849.73079
[24] Gallagher, R. H.; Kujawski, J., A generalized least-squares family of algorithms for transient dynamic analysis, Earthquake Engrg. Struct. Dynam., 18, 539-550 (1989)
[25] Kane, C.; Marsden, J. E.; Ortiz, M.; West, M., Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, Int. J. Numer. Methods Engrg., 49, 1295-1325 (2000) · Zbl 0969.70004
[26] Laursen, T. A., Computational Contact and Impact Mechanics (2002), Springer · Zbl 0996.74003
[27] Laursen, T. A.; Chawla, V., Design of energy conserving algorithms for frictionless dynamic contact problems, Int. J. Numer. Methods Engrg., 40, 863-886 (1997) · Zbl 0886.73067
[28] Laursen, T. A.; Love, G. R., Improved implicit integrators for transient impact problems; geometric admissibility within the conserving framework, Int. J. Numer. Methods Engrg., 53, 2, 245-274 (2002) · Zbl 1112.74526
[29] Laursen, T. A.; Meng, X. N., A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics, Comput. Methods Appl. Mech. Engrg., 190, 6309-6322 (2001) · Zbl 1022.74013
[30] Lew, A.; Marsden, J. E.; Ortiz, M.; West, M., Asynchronous variational integrators, Arch. Ration. Mech. Anal., 16, 2, 85-146 (2003) · Zbl 1055.74041
[31] Ortiz, M.; Zielonka, M.; Marsden, J. E., Variational \(r\) adaption in elastodynamics, Int. J. Numer. Methods Engrg., 74, 1162-1197 (2008) · Zbl 1158.74507
[32] Marsden, J. E.; West, M., Acta Numerica, Chapter Discrete Mechanics and Variational Integrators (2001), Cambridge University Press, pp. 357-514 · Zbl 1123.37327
[33] Moreau, J. J., Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Engrg., 177, 329-349 (1999) · Zbl 0968.70006
[34] Taylor, R. L.; Zienkiewicz, O. C., The Finite Element Method (1989), McGraw-Hill · Zbl 0991.74002
[35] Puso, M. A., A 3d mortar method for solid mechanics, Int. J. Numer. Methods Engrg., 59, 315-336 (2004) · Zbl 1047.74065
[36] Puso, M. A.; Laursen, T. A., A 3d contact smoothing method using gregory patches, Int. J. Numer. Methods Engrg., 54, 1161-1194 (2002) · Zbl 1098.74711
[38] Renard, Y., The singular dynamic method for constrained second order hyperbolic equations. application to dynamic contact problems, J. Comput. Appl. Math., 234, 3, 906-923 (2010) · Zbl 1423.35240
[39] Simo, J. C.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for non linear elastodynamics, Z. Angew. Math. Phys., 43, 757-792 (1992) · Zbl 0758.73001
[40] Mindle, W. L.; Belytschko, T., Flexural wave propagation behavior of lumped mass approximations, Comput. Struct., 12, 805-812 (1980) · Zbl 0442.73027
[42] Le Tallec, P.; Mani, S., Numeric analysis of a linearized fluid-structure interaction problem, Numer. Math., 87, 317-354 (2000) · Zbl 0998.76050
[43] Wohlmuth, B. I., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 989-1012 (2000) · Zbl 0974.65105
[44] Barboteu, Y.; Ayyad, M.; Fernandez, R., A frictionless viscoelastodynamic contact problem with energy consistent properties: numerical analysis and computational aspects, Comput. Methods Appl. Mech. Engrg., 198, 669-679 (2009) · Zbl 1229.74108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.