×

Group cocycles and the ring of affiliated operators. (English) Zbl 1227.22003

The authors study cocycles of discrete countable groups with values in \(\ell^2G\) and the ring of affiliated operators \(\mathcal{U}G\). They clarify properties of the first cohomology of a group \(G\) with coefficients in \(\ell^2 G\) and answer several questions from Y. de Cornulier, R. Tessera and A. Valette [Transform. Groups 13, No. 1, 125–147 (2008; Zbl 1149.22006)]. Moreover, they obtain strong results about the existence of free subgroups and the subgroup structure, provided the group has a positive first \(\ell^2\)-Betti number. They give numerous applications and examples of groups which satisfy their assumptions.

MSC:

22-XX Topological groups, Lie groups
20-XX Group theory and generalizations
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.

Citations:

Zbl 1149.22006

References:

[1] Abért, M., Jaikin-Zapirain, A., Nikolov, N.: The rank gradient from a combinatorial viewpoint (2006). arXiv:math/0701925 · Zbl 1284.20047
[2] Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. In: Colloque ”Analyse et Topologie” en l’Honneur de Henri Cartan, Orsay, 1974. Astérisque, vol. 32–33, pp. 43–72. Soc. Math. France, Paris (1976)
[3] Baumslag, B.: Intersections of finitely generated subgroups in free products. J. Lond. Math. Soc. 41, 673–679 (1966) · Zbl 0145.02402 · doi:10.1112/jlms/s1-41.1.673
[4] Bekka, M., Cowling, M., de la Harpe, P.: Some groups whose reduced C algebra is simple. Inst. Hautes Études Sci. Publ. Math. 80, 117–134 (1994) · Zbl 0827.22001 · doi:10.1007/BF02698898
[5] Bekka, M., Valette, A.: Group cohomology, harmonic functions and the first L 2-Betti number. Potential Anal. 6(4), 313–326 (1997) · Zbl 0882.22013 · doi:10.1023/A:1017974406074
[6] Berberian, S.: The maximal ring of quotients of a finite von Neumann algebra. Rocky Mt. J. Math. 12(1), 149–164 (1982) · Zbl 0484.46054 · doi:10.1216/RMJ-1982-12-1-149
[7] Bourdon, M., Martin, F., Valette, A.: Vanishing and non-vanishing of the first L p -cohomology of groups. Comment. Math. Helv. 80, 377–389 (2005) · Zbl 1139.20045 · doi:10.4171/CMH/18
[8] Bridson, M., Howie, J.: Normalisers in limit groups. Math. Ann. 337(2), 385–394 (2007) · Zbl 1139.20037 · doi:10.1007/s00208-006-0039-1
[9] Bridson, M., Tweedale, M., Wilton, H.: Limit groups, positive-genus towers and measure-equivalence. Ergod. Theory Dyn. Syst. 27(3), 703–712 (2007) · Zbl 1182.37004 · doi:10.1017/S0143385706001039
[10] Brown, K.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York (1982) · Zbl 0584.20036
[11] Brown, N.P., Dykema, K.J., Jung, K.: Free entropy dimension in amalgamated free products. Proc. Lond. Math. Soc. (3) 97(2), 339–367 (2008). With an appendix by Wolfgang Lück · Zbl 1158.46045 · doi:10.1112/plms/pdm054
[12] Champetier, C., Guirardel, V.: Limit groups as limits of free groups. Isr. J. Math. 146, 1–75 (2005) · Zbl 1103.20026 · doi:10.1007/BF02773526
[13] Cheeger, J., Gromov, M.: L 2-cohomology and group cohomology. Topology 25(2), 189–215 (1986) · Zbl 0597.57020 · doi:10.1016/0040-9383(86)90039-X
[14] De Cornulier, Y., Tessera, R., Valette, A.: Isometric group actions on Banach spaces and representations vanishing at infinity. Transform. Groups 13(1), 125–147 (2008) · Zbl 1149.22006 · doi:10.1007/s00031-008-9006-0
[15] Dicks, W., Linnell, P.A.: L 2-Betti numbers of one-relator groups. Math. Ann. 337(4), 855–874 (2007) · Zbl 1190.20021 · doi:10.1007/s00208-006-0058-y
[16] Dodziuk, J.: de Rham-Hodge theory for L 2-cohomology of infinite coverings. Topology 16(2), 157–165 (1977) · Zbl 0348.58001 · doi:10.1016/0040-9383(77)90013-1
[17] Dodziuk, J., Linnell, P., Mathai, V., Schick, T., Yates, S.: Approximating L 2-invariants and the Atiyah conjecture. Commun. Pure Appl. Math. 56(7), 839–873 (2003) · Zbl 1036.58017 · doi:10.1002/cpa.10076
[18] Feldman, J., Sutherland, C., Zimmer, R.J.: Subrelations of ergodic equivalence relations. Ergod. Theory Dyn. Syst. 9(2), 239–269 (1989) · Zbl 0654.22003 · doi:10.1017/S0143385700004958
[19] Gaboriau, D.: Invariants l 2 de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes Études Sci. 95, 93–150 (2002) · Zbl 1022.37002 · doi:10.1007/s102400200002
[20] Gaboriau, D.: Examples of groups that are measure equivalent to the free group. Ergod. Theory Dyn. Syst. 25(6), 1809–1827 (2005) · Zbl 1130.37311 · doi:10.1017/S0143385705000258
[21] Goodearl, K.: Metrically complete regular rings. Trans. Am. Math. Soc. 272(1), 275–310 (1982) · Zbl 0494.16007 · doi:10.1090/S0002-9947-1982-0656490-6
[22] Griffiths, H.: The fundamental group of a surface, and a theorem of Schreier. Acta Math. 110, 1–17 (1963) · Zbl 0119.18902 · doi:10.1007/BF02391853
[23] Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999) · Zbl 0953.53002
[24] Ioana, A., Peterson, J., Popa, S.: Amalgamated free products of weakly rigid factors and calculation of their symmetry groups. Acta Math. 200, 85–153 (2008) · Zbl 1149.46047 · doi:10.1007/s11511-008-0024-5
[25] Jung, K.: Strongly 1-bounded von Neumann algebras. Geom. Funct. Anal. 17(4), 1180–1200 (2007) · Zbl 1146.46034 · doi:10.1007/s00039-007-0624-9
[26] Kapovich, I.: Subgroup properties of fully residually free groups. Trans. Am. Math. Soc. 354(1), 335–362 (2002) (electronic) · Zbl 0983.20022 · doi:10.1090/S0002-9947-01-02840-9
[27] Kapovich, I.: Erratum to: ”Subgroup properties of fully residually free groups”. Trans. Am. Math. Soc. 355(3), 1295–1296 (2003) (electronic) · doi:10.1090/S0002-9947-02-03201-4
[28] Karrass, A., Solitar, D.: Note on a theorem of Schreier. Proc. Am. Math. Soc. 8, 696–697 (1957) · Zbl 0078.01401 · doi:10.1090/S0002-9939-1957-0086813-1
[29] Kropholler, P.H.: A generalization of the Lyndon-Hochschild-Serre spectral sequence with applications to group cohomology and decompositions of groups. J. Group Theory 9(1), 1–25 (2006) · Zbl 1115.20042 · doi:10.1515/JGT.2006.001
[30] Linnell, P.: Division rings and, group von Neumann algebras. Forum Math. 5(6), 561–576 (1993) · Zbl 0794.22008 · doi:10.1515/form.1993.5.561
[31] Lück, W.: L 2-invariants: theory and applications to geometry and K-theory. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44. Springer, Berlin (2002) · Zbl 1009.55001
[32] Martin, F., Valette, A.: On the first L p -cohomology of discrete groups. Groups Geom. Dyn. 1(1), 81–100 (2007) · Zbl 1175.20045 · doi:10.4171/GGD/5
[33] Moon, M.: On certain finitely generated subgroups of groups which split. Can. Math. Bull. 46(1), 122–129 (2003) · Zbl 1026.20013 · doi:10.4153/CMB-2003-012-7
[34] Osin, D.V.: L 2-Betti numbers and non-unitarizable groups without free subgroups. Int. Math. Res. Not. IMRN 22, 4220–4231 (2009) · Zbl 1192.43006
[35] Ozawa, N., Popa, S.: On a class of II1 factors with at most one Cartan subalgebra (2007). Ann. Math. (to appear). doi: 10.4007/annals.2010.172.713
[36] Peterson, J.: L 2-rigidity in von Neumann algebras. Invent. Math. 175, 417–433 (2009) · Zbl 1170.46053 · doi:10.1007/s00222-008-0154-6
[37] Pichot, M.: Semi-continuity of the first l 2-Betti number on the space of finitely generated groups. Comment. Math. Helv. 3, 643–652 (2006) · Zbl 1147.20038 · doi:10.4171/CMH/67
[38] Popa, S.: Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions. J. Inst. Math. Jussieu 5(2), 309–332 (2006) · Zbl 1092.37003 · doi:10.1017/S1474748006000016
[39] Popa, S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. I. Invent. Math. 165(2), 369–408 (2006) · Zbl 1120.46043 · doi:10.1007/s00222-006-0501-4
[40] Popa, S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. II. Invent. Math. 165(2), 409–451 (2006) · Zbl 1120.46044 · doi:10.1007/s00222-006-0502-3
[41] Popa, S.: Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups. Invent. Math. 170(2), 243–295 (2007) · Zbl 1131.46040 · doi:10.1007/s00222-007-0063-0
[42] Reich, H.: On the K- and L-theory of the algebra of operators affiliated to a finite von Neumann algebra. K-Theory 24(4), 303–326 (2001) · Zbl 0998.19005 · doi:10.1023/A:1014078228859
[43] Sauer, R., Thom, A.: A Hochschild-Serre spectral sequence for extensions of discrete measured groupoids (2007). J. LMS (to appear). doi: 10.1112/jlms/jdq017
[44] Sela, Z.: Diophantine geometry over groups. I. Makanin-Razborov diagrams. Publ. Math. Inst. Hautes Études Sci. 93, 31–105 (2001) · Zbl 1018.20034 · doi:10.1007/s10240-001-8188-y
[45] Takesaki, M.: Theory of Operator Algebras. II. Encyclopaedia of Mathematical Sciences, vol. 125. Springer, Berlin (2003). Operator Algebras and Non-commutative Geometry · Zbl 1059.46031
[46] Thom, A.: L 2-invariants and rank metric. In: C algebras and Elliptic Theory II, Trends in Mathematics, pp. 267–280. Birkhäuser, Basel (2007) · Zbl 1157.46031
[47] Thom, A.: L 2-cohomology for von Neumann algebras. GAFA 18, 251–270 (2008) · Zbl 1146.46035 · doi:10.1007/s00039-007-0634-7
[48] Wilson, J.: On growth of groups with few relators. Bull. Lond. Math. Soc. 36(1), 1–2 (2004) · Zbl 1048.20015 · doi:10.1112/S0024609303002674
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.