×

On approximate KKT condition and its extension to continuous variational inequalities. (English) Zbl 1220.90130

Summary: In this work, we introduce a necessary sequential approximate Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the approximate gradient projection condition (AGP) of Gárciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C46 Optimality conditions and duality in mathematical programming
Full Text: DOI

References:

[1] Martínez, J.M., Svaiter, B.F.: A practical optimality condition without constraint qualifications for nonlinear programming. J. Optim. Theory Appl. 118, 117–133 (2003) · Zbl 1033.90090 · doi:10.1023/A:1024791525441
[2] Schuverdt, M.L.: Métodos de Lagrangiano aumentado com convergência utilizando a condição de dependência linear positiva constante. Ph.D. Thesis, UNICAMP (2006)
[3] Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization (2010). doi: 10.1080/02331930903578700 · Zbl 1231.90341
[4] Haeser, G.: Condições sequenciais de otimalidade. Ph.D. Thesis, UNICAMP (2009)
[5] Martínez, J.M., Pilotta, E.A.: Inexact restoration algorithms for constrained optimization. J. Optim. Theory Appl. 104, 135–163 (2000) · Zbl 0969.90094 · doi:10.1023/A:1004632923654
[6] Martínez, J.M., Pilotta, E.A.: Inexact restoration methods for nonlinear programming: advances and perspectives. In: Qi, L.Q., Teo, K.L., Yang, X.Q. (eds.) Optimization and Control with Applications, pp. 271–292. Springer, Berlin (2005) · Zbl 1118.90319
[7] Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between the Constant Positive Linear Dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005) · Zbl 1125.90058 · doi:10.1007/s10957-004-1861-9
[8] Andreani, R., Martínez, J.M., Schuverdt, M.L.: On second-order optimality conditions for nonlinear programming. Optimization 56, 529–542 (2007) · Zbl 1172.90490 · doi:10.1080/02331930701618617
[9] Gárciga-Otero, R., Svaiter, B.F.: A new condition characterizing solutions of variational inequality problems. J. Optim. Theory Appl. 137, 89–98 (2008) · Zbl 1143.49017 · doi:10.1007/s10957-007-9320-z
[10] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003) · Zbl 1062.90002
[11] Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower–level constraints. SIAM J. Control Optim. 18, 1286–1309 (2007) · Zbl 1151.49027
[12] Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Control Optim. 10, 963–981 (2000) · Zbl 0999.90037 · doi:10.1137/S1052623497326629
[13] Janin, R.: Direction derivative of the marginal function in nonlinear programming. Math. Program. Stud. 21, 127–138 (1984) · Zbl 0571.90080 · doi:10.1007/BFb0121215
[14] Mangasarian, O.L., Fromovitz, S.: The Fritz-John necessary optimality conditions in presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967) · Zbl 0149.16701 · doi:10.1016/0022-247X(67)90163-1
[15] Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problem. Part 1: Sufficient optimality conditions. J. Optim. Theory Appl. 142, 147–163 (2009) · Zbl 1198.90391 · doi:10.1007/s10957-009-9518-3
[16] Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problem. Part 2: Necessary optimality conditions. J. Optim. Theory Appl. 142, 165–183 (2009) · Zbl 1205.90294 · doi:10.1007/s10957-009-9521-8
[17] Giannessi, F.: Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, vol. 1. Springer, New York (2005) · Zbl 1082.49001
[18] Hestenes, M.R.: Optimization Theory–The Finite-Dimensional Case. Wiley, New York (1975) · Zbl 0327.90015
[19] Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
[20] Abadie, J.: On the Kuhn-Tucker theorem. In: Abadie, J. (ed.) Nonlinear Programming, pp. 21–36. North-Holland, Amsterdam (1967) · Zbl 0183.22803
[21] Iusem, A.N., Nasri, M.: Augmented Lagrangian methods for variational inequality problems. RAIRO. Rech. Opér. 44, 5–25 (2010) · Zbl 1187.90293 · doi:10.1051/ro/2010006
[22] Auslender, A., Teboulle, M.: Lagrangian duality and related multiplier methods for variational inequality problems. SIAM J. Control Optim. 10, 1097–1115 (1999) · Zbl 0996.49005
[23] Martínez, J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 111, 39–58 (2001) · Zbl 1052.90089 · doi:10.1023/A:1017567113614
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.