×

Generalized uncertainty inequalities. (English) Zbl 1216.43002

The author generalizes the Heisenberg-Pauli-Weyl uncertainty principle inequality
\[ \|f\|_2\leq C_{\alpha,\beta} \big\| |x|^\alpha f\big\|_2^{\frac{\beta}{\alpha+\beta}} \big\|(-\Delta)^{\beta/2} f\big\|_2^{\frac{\alpha}{\alpha+\beta}} \]
on \(L^2(\mathbb{R}^n)\) with \(\alpha,\beta>0\) to an inequality of the form
\[ \|f\|_{H}\leq C_{\alpha,\beta} \| T\alpha f\|_H^{\frac{\beta}{\alpha+\beta}} \|L^{\beta} f\|_H^{\frac{\alpha}{\alpha+\beta}} \]
on a Hilbert space \(H\) where \(T\) and \(L\) satisfy certain growth properties expressed in spectral terms. One defines \((H,V^0)\) to be a regularized conjugate dual couple for \((H,V)\) where \(H\) is Hilbert and \(V\) a Banach space when \(V^0\) is the closure in \(V\) of \(H\cap V\). Define \(E_\lambda = E([0,\lambda))\) where \(E\) is the spectral measure of the possibly unbounded self-adjoint operator \(L\) (and \(F_\lambda\) corresponding to \(T\)). The growth conditions on \(E\) and \(F\) are formulated as follows. Fix \(\eta, \delta>0\). Let \(\Phi\) be a nonnegative measurable function defined on \([0, \eta b^\delta)\) and satisfying a moderate growth condition of the form
\[ \int_0^r s^{-2\gamma}\, \Phi (s)\, \frac{ds}{s} \leq M r^{-2\gamma} \,\Phi (r) \]
for any \(r\in (\eta a^\delta,\, \eta b^\delta)\). Suppose that \(\|F_t\|_{V^\circ\to V}\leq \Phi (r)\) for any \(r\in [0,\eta b^\delta)\) and \(\|E_{1/t}\|_{V\to V^\circ}\leq K^2/\Phi (\eta t^\delta)\) for any \(t\in [0,b)\). The first main result states that, then, for any \(t\in [a,b]\) and any \(f\in H\) one has
\[ \|E_{1/t} f\|_H \leq C t^{-\gamma\delta}\|T^\gamma f\|_{H}, \]
for a suitably determined constant \(C\).
The second main result states that, with the definitions above and the extended conclusion
\[ \|E_{1/t} f\|_H \leq C t^{-\gamma\delta}\|T^\gamma f\|_{H} \quad (\text{all }t>0) \]
one has, for all \(\alpha\geq \gamma\) and \(\beta>0\) and a suitable constant \(D_{\alpha,\beta}\),
\[ \|f\|_{H}\leq D_{\alpha,\beta} \| T\alpha f\|_H^{\frac{\beta}{\alpha+\beta}} \|L^{\beta\delta} f\|_H^{\frac{\alpha}{\alpha+\beta}} . \]
Specific \(L^2\)-uncertainty principles are proved as consequences for cases of Riemannian manifolds with a spectral gap, Riemannian symmetric spaces of non-compact type, and compact Riemannian manifolds. Still more precise bounds are given in the discrete cases of an \(n\)-dimensional square lattice and a homogeneous tree of degree \(n\), as well as for specific unimodular Lie groups. For example, in the case of a compact Riemannian manifold \(M\) with \(-L=\Delta\), the Laplace-Beltrami operator, and \(\rho=d(x_0,\cdot)\) the distance to a distinguished point, one has
\[ \|f\|_{L^2(M)}\leq C_{\alpha,\beta} \|\rho^\alpha f\|_{L^2}^{\frac{\beta}{\alpha+\beta}}\|(-\Delta)^{\beta/2} f\|_{L^2}^{\frac{\alpha}{\alpha+\beta}}. \]

MSC:

43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43A32 Other transforms and operators of Fourier type
46B70 Interpolation between normed linear spaces
46E20 Hilbert spaces of continuous, differentiable or analytic functions
47A30 Norms (inequalities, more than one norm, etc.) of linear operators
47B40 Spectral operators, decomposable operators, well-bounded operators, etc.
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity

References:

[1] Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976). Grundlehren der Mathematischen Wissenschaften, No. 223 · Zbl 0344.46071
[2] Brudnyĭ, Y.A., Krugljak, N.Y.: Interpolation Functors and Interpolation Spaces, vol. I, North-Holland Mathematical Library, vol. 47. North-Holland, Amsterdam (1991). Translated from the Russian by Natalie Wadhwa, with a preface by Jaak Peetre
[3] Cartwright D.I., Soardi P.M.: Random walks on free products, quotients and amalgams. Nagoya Math. J. 102, 163–180 (1986) · Zbl 0592.60052
[4] Christ M., Müller D.: On L p spectral multipliers for a solvable Lie group. Geom. Funct. Anal. 6(5), 860–876 (1996) · Zbl 0878.43008 · doi:10.1007/BF02246787
[5] Ciatti P., Ricci F., Sundari M.: Heisenberg–Pauli–Weyl uncertainty inequalities and polynomial volume growth. Adv. Math. 215(2), 616–625 (2007) · Zbl 1148.43010 · doi:10.1016/j.aim.2007.03.014
[6] Coulhon T.: Dimension à l’infini d’un semi-groupe analytique. Bull. Sci. Math. 114(4), 485–500 (1990) · Zbl 0738.47032
[7] Coulhon T., Meda S.: Subexponential ultracontractivity and L p L q functional calculus. Math. Z. 244(2), 291–308 (2003) · Zbl 1058.47036
[8] Cowling M., Giulini S., Meda S.: L p L q estimates for functions of the Laplace–Beltrami operator on noncompact symmetric spaces. I. Duke Math. J. 72(1), 109–150 (1993) · Zbl 0807.43002 · doi:10.1215/S0012-7094-93-07206-7
[9] Cowling M., Meda S., Setti A.G.: Estimates for functions of the Laplace operator on homogeneous trees. Trans. Am. Math. Soc. 352(9), 4271–4293 (2000) · Zbl 0949.43008 · doi:10.1090/S0002-9947-00-02460-0
[10] Davies E.B.: Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989) · Zbl 0699.35006
[11] Folland G.B., Sitaram A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997) · Zbl 0885.42006 · doi:10.1007/BF02649110
[12] Grigor’yan, A.: Estimates of heat kernels on Riemannian manifolds. In: Spectral Theory and Geometry (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., vol. 273, pp. 140–225. Cambridge University Press, Cambridge (1999)
[13] Guivarc’h Y.: Croissance polynomiale et périodes des fonctions harmoniques. Bull. Soc. Math. France 101, 333–379 (1973)
[14] Knieper G.: On the asymptotic geometry of nonpositively curved manifolds. Geom. Funct. Anal. 7(4), 755–782 (1997) · Zbl 0896.53033 · doi:10.1007/s000390050025
[15] Mohar B., Woess W.: A survey on spectra of infinite graphs. Bull. Lond. Math. Soc. 21(3), 209–234 (1989) · Zbl 0645.05048 · doi:10.1112/blms/21.3.209
[16] Price J.F., Sitaram A.: Local uncertainty inequalities for compact groups. Proc. Am. Math. Soc. 103(2), 441–447 (1988) · Zbl 0662.43007 · doi:10.1090/S0002-9939-1988-0943063-1
[17] Ricci F.: Uncertainty inequalities on spaces with polynomial volume growth. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29(1), 327–337 (2005)
[18] Strichartz R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983) · Zbl 0515.58037 · doi:10.1016/0022-1236(83)90090-3
[19] Varopoulos N.T.: Analysis on Lie groups. J. Funct. Anal. 76(2), 346–410 (1988) · Zbl 0634.22008 · doi:10.1016/0022-1236(88)90041-9
[20] Varopoulos N.T.: Hardy–Littlewood theory on unimodular groups. Ann. Inst. H. Poincaré Probab. Stat. 31(4), 669–688 (1995) · Zbl 0844.60006
[21] Varopoulos N.T.: Analysis on Lie groups. Rev. Mat. Iberoamericana 12(3), 791–917 (1996) · Zbl 0881.22009
[22] Varopoulos N.T., Saloff-Coste L., Coulhon T.: Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992) · Zbl 0813.22003
[23] Woess W.: Nearest neighbour random walks on free products of discrete groups. Boll. Un. Mat. Ital. B (6) 5(3), 961–982 (1986) · Zbl 0627.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.