×

On coercivity and regularity for linear elliptic systems. (English) Zbl 1208.35044

Author’s abstract: We introduce a nonlinear method to study a “universal” strong coercivity problem for monotone linear elliptic systems by compositions of finitely many constant coefficient tensors satisfying the Legendre-Hadamard strong ellipticity condition. We give conditions and counterexamples for universal coercivity. In the case of non-coercive systems, we give examples to show that the corresponding variational integral may have infinitely many nowhere \(C^1\) minimizers on their supports. For some universally coercive systems, we also present examples with affine boundary values which have nowhere-\(C^1\) solutions.

MSC:

35J47 Second-order elliptic systems
35J50 Variational methods for elliptic systems
35B60 Continuation and prolongation of solutions to PDEs
Full Text: DOI

References:

[1] Adams R.A.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030
[2] Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977) · Zbl 0368.73040 · doi:10.1007/BF00279992
[3] Ball J.M.: A version of the fundamental theorem of Young measures. In: Rascle, , M., , Serre, , D., , Slemrod, , M., (eds) Partial Differential Equations and Continuum Models of Phase Transitions, pp. 207–215. Springer, New York (1989) · Zbl 0991.49500
[4] Bhattacharya K., Firoozye N.B., James R.D., Kohn R.V.: Restrictions on microstructures. Proc. R. Soc. Edinb. 124A, 843–878 (1994) · Zbl 0808.73063
[5] Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987) · Zbl 0629.49020 · doi:10.1007/BF00281246
[6] Ball J.M., James R.D.: Proposed experimental tests of a theory of fine microstructures and the two-well problem. Phil. R. Soc. Lon. 338A, 389–450 (1992) · Zbl 0758.73009 · doi:10.1098/rsta.1992.0013
[7] Coifman R., Lions P., Meyer Y., Semmes S.: Compensated compactness and Hardy spaces. J. Math. Pure Appl. 72, 247–286 (1993) · Zbl 0864.42009
[8] Cellina A., Perrotta S.: On a problem of potential wells. J. Convex Anal. 2, 103–115 (1995) · Zbl 0880.49005
[9] Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989) · Zbl 0703.49001
[10] DiPerna R.J.: Compensated compactness and general systems of conservation laws. Trans. Am. Math. Soc. 292, 383–420 (1985) · Zbl 0606.35052 · doi:10.1090/S0002-9947-1985-0808729-4
[11] Dacorogna B., Marcellini P.: General existence theorems for Hamilton-Jacobi Equations in the scalar and vectorial cases. Acta Math. 178, 1–37 (1997) · Zbl 0901.49027 · doi:10.1007/BF02392708
[12] Dacorogna B., Marcellini P.: Implicit Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 37. Birkhäuser, Boston (1999) · Zbl 0938.35002
[13] Dacorogna B., Pisante G.: A general existence theorem for differential inclusions in the vector valued case. Port. Math. (N.S.) 62, 421–436 (2005) · Zbl 1107.49008
[14] Le Dret H.: An example of H 1-unboundedness of solutions to strongly elliptic systems of PDEs in a laminated geometry. Proc. R. Soc. Edinb. 15, 77–82 (1987) · Zbl 0647.35020
[15] Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976) · Zbl 0322.90046
[16] Faraco D., Zhong X.: Quasiconvex functions and Hessian equations. Arch. Ration. Mech. Anal. 168, 245–252 (2003) · Zbl 1047.49017 · doi:10.1007/s00205-003-0255-8
[17] Giaquinta M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics ETH Zurich. Birkhauser, Basel (1993) · Zbl 0786.35001
[18] Geymonat G., Müller S., Triantafylldis N.: Homognization of nonlinear elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Ration. Mech. Anal. 122, 231–290 (1993) · Zbl 0801.73008 · doi:10.1007/BF00380256
[19] Grabovsky Y.: Bounds and extreme microstructures for two-component composites: a unified treatment based on the translation method. Proc. R. Soc. Lond. 452A, 919–944 (1996) · Zbl 0892.73030
[20] Gromov M.: Partial Differential Relations. Springer, New York (1986) · Zbl 0651.53001
[21] Giaquinta M., Soucěk J.: Caccioppoli’s inequality and Legendre–Hadamard condition. Math. Ann. 270, 105–107 (1985) · Zbl 0561.35027 · doi:10.1007/BF01455535
[22] Kirchheim, B.: Rigidity and Geometry of Microstructures. MPI for Mathematics in the Sciences, Leipzig, vol. 16. Lecture notes ( http://www.mis.mpg.de/preprints/ln/lecturenote-1603.pdf ) (2003) · Zbl 1140.74303
[23] Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991) · Zbl 0754.49020 · doi:10.1007/BF00375279
[24] Kohn R.V., Milton G.W.: On bounding the effective conductivity of anisotropic composites. In: Ericksen, J.L., Kinderlehrer, D., Kohn, R.V., Lions, P.L. (eds) Homogenization and Effective Moduli of Materials and Media, pp. 97–125. Springer, New York (1986) · Zbl 0631.73012
[25] Kirchheim, B., Müller, S., Šverák, V.: Studying Nonlinear PDE by Geometry in Matrix Space. Geometric Analysis and Nonlinear Partial Differential Equations, pp. 347–395. Springer, Berlin (2003) · Zbl 1290.35097
[26] Kristensen J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313, 653–710 (1999) · Zbl 0924.49012 · doi:10.1007/s002080050277
[27] Lurie K.A., Cherkaev A.V.: Exact estimates of the conductivity of composites formed two isotropically conducting media taken in prescribed proportion. Proc. R. Soc. Edinb. 99A, 71–87 (1984) · Zbl 0564.73079
[28] Lou Z., McIntosh A.: Hardy space of exact forms on \({\mathbb{R}^N}\) . Trans. Am. Math. Soc. 357, 1469–1496 (2005) · Zbl 1079.42014 · doi:10.1090/S0002-9947-04-03535-4
[29] Marcellini P.: Quasiconvex quadratic forms in two dimensions. Appl. Math. Optim. 11, 183–189 (1984) · Zbl 0567.49007 · doi:10.1007/BF01442177
[30] Milton G.: On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Comm. Pure Appl. Math. XLIII, 63–125 (1990) · Zbl 0751.73041 · doi:10.1002/cpa.3160430104
[31] Morrey C.B. Jr.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966) · Zbl 0142.38701
[32] Müller, S.: Variational Models for Microstructure and Phase Transitions, vol. 2. Lecture Notes. Max-Planck-Institute for Mathematics in the Sciences, Lepzig (1998)
[33] Müller, S., Šverák, V.: Attainment results for the two-well problem by convex integration. In: Jost, J. (ed.) Geometric Analysis and the Calculus of Variations, pp. 239–251. International Press, Cambridge (1996) · Zbl 0930.35038
[34] Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. Doc. Math. J. DMV ICM (1998), pp. 691–702 · Zbl 0896.35029
[35] Müller S., Šverák V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–422 (1999) · Zbl 0953.35042 · doi:10.1007/s100970050012
[36] Müller S., Šverák V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157, 715–742 (2003) · Zbl 1083.35032 · doi:10.4007/annals.2003.157.715
[37] Müller S., Sychev M.A.: Optimal existence theorems for nonhomogeneous differential inclusions. J. Funct. Anal. 181, 447–475 (2001) · Zbl 0989.49012 · doi:10.1006/jfan.2000.3726
[38] Nesi V.: Bounds for the effective conductivity of two-dimensional composites made of n 3 isotropic phases in prescribed volume fraction: the weighted translation method. Proc. R. Soc. Edinb. 125A, 1219–1239 (1995) · Zbl 0852.35016
[39] Pedregal P.: Parametrized Measures and Variational Principles. Progress in Nonlinear Differential Equations and their Applications, vol. 30. Birkhäuser, Boston (1997) · Zbl 0879.49017
[40] Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401
[41] Serre D.: Formes quadratiques et calcul des variations. J. Math. Pures Appl. 62, 177–196 (1983) · Zbl 0529.49005
[42] Šverák V.: Rank one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. 120A, 185–189 (1992) · Zbl 0777.49015
[43] Šverák V.: New examples of quasiconvex functions. Arch. Ration. Mech. Anal. 119, 293–300 (1992) · Zbl 0823.26009 · doi:10.1007/BF01837111
[44] Šverák V.: On the problem of two wells. In: Kinderlehrer, D., James, R., Luskin, M., Ericksen, J. (eds) Microstructure and Phase Transition. The IMA Volumes in Mathematics and its Applications, vol. 54, pp. 183–189. Springer, Berlin (1994)
[45] Sychev M.A.: Comparing two methods of resolving homogeneous differential inclusions. Calc. Var. PDEs 13, 213–229 (2001) · Zbl 0994.35038 · doi:10.1007/PL00009929
[46] Tartar L.: Compensated compactness and applications to partial differential equations. In: Knops, R.J. (eds) Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, pp. 136–212. Pitman, Boston (1979) · Zbl 0437.35004
[47] Tartar L.: Estimations fine des coefficients homogénéisés. In: Krée, P. (eds) Ennio de Giorgi’s Colloquium, pp. 168–187. Pitman, Boston (1985)
[48] Tartar L.: Some remarks on separately convex functions. In: Kinderlehrer, D., James, R., Luskin, M., Ericksen, J. (eds) Microstructure and Phase Transition. The IMA Volumes in Mathematics and its Applications, vol. 54, pp. 191–204. Springer, New York (1993)
[49] Terpstra F.: Die Darstellung biquadratischer formen als summen von quadraten mit anwendung auf die variations rechnung. Math. Ann. 116, 166–180 (1938) · Zbl 0019.35203 · doi:10.1007/BF01597353
[50] Yan B.: Remarks on W 1,p -stability of the conformal set in higher dimensions. Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 691–705 (1996) · Zbl 1076.49509
[51] Yan B.: Semiconvex hulls of quasiconformal sets. J. Convex Anal. 8, 269–278 (2001) · Zbl 0978.30014
[52] Zhang K.-W.: A counterexample in the theory of coerciveness for elliptic systems. J. PDEs 2(3), 79–82 (1989) · Zbl 0702.35074
[53] Zhang K.-W.: A further comment on the coerciveness theory for elliptic systems. J. PDEs 2(4), 62–66 (1989) · Zbl 0694.35058
[54] Zhang K.-W.: A construction of quasiconvex functions with linear growth at infinity. Ann. Sc. Norm Sup. Pisa. Ser. IV XIX, 313–326 (1992) · Zbl 0778.49015
[55] Zhang K.-W.: On the coercivity of elliptic systems in two-dimensional spaces. Bull. Aust. Math. Soc. 54, 423–430 (1996) · Zbl 0877.35035 · doi:10.1017/S0004972700021833
[56] Zhang K.-W.: On connected subsets of M 2 {\(\times\)} 2 without rank-one connections. Proc. R. Soc. Edinb. 127A, 207–216 (1997) · Zbl 0868.58013
[57] Zhang K.-W.: On non-negative quasiconvex functions with unbounded zero sets. Proc. R. Soc. Edinb. 127A, 411–422 (1997) · Zbl 0883.49013
[58] Zhang K.-W.: Quasiconvex functions, SO(n) and two elastic wells. Anal. Nonlin. H. Poincaré 14, 759–785 (1997) · Zbl 0918.49014 · doi:10.1016/S0294-1449(97)80132-1
[59] Zhang K.-W.: On the structure of quasiconvex hulls. Ann. Inst. H. Poincaré: Anal. Nonlineaire 15, 663–686 (1998) · Zbl 0917.49014 · doi:10.1016/S0294-1449(99)80001-8
[60] Zhang K.-W.: On some quasiconvex functions with linear growth. J. Convex Anal. 5, 133–146 (1998) · Zbl 0915.49008
[61] Zhang K.-W.: Maximal extension for linear spaces of real matrices with large rank. Proc. R. Soc. Edinb. 131A, 1481–1491 (2001) · Zbl 0998.15019 · doi:10.1017/S0308210500001499
[62] Zhang K.-W.: The structure of rank-one convex quadratic forms on linear elastic strains. Proc. R. Soc. Edinb. 133A, 213–224 (2003) · Zbl 1205.49021 · doi:10.1017/S0308210500002365
[63] Zhang K.-W.: On separation of gradient Young measures. Calc. Var. PDEs 17, 85–103 (2003) · Zbl 1036.49025 · doi:10.1007/s00526-002-0163-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.