×

Estimating the digamma and trigamma functions by completely monotonicity arguments. (English) Zbl 1207.33002

A real valued function \(f\) is completely monotonic on \((0,1)\) if it has derivatives of all orders and for every \(x\in (0,1)\) and \(n\geq 1\), we have \((-1)^nf^{(n)}(x)\geq 0\). Motivated by approximation of the Gamma function and \(n!\), the author considers the function \(F_a:[0,\infty)\to\mathbb{R}\) defined by
\[ F_a(x)=\ln\Gamma(x+1)-\left(x+\frac{1}{2}\right)\ln(x+a)+x+a+\frac{1}{2}-\ln\sqrt{2\pi e}, \]
and shows that the functions \(F_a\) and \(-F_b\) are completely monotonic, respectively for \(a\in [0,(3-\sqrt{3})/6]\) and \(b\in [1/2,(3+\sqrt{3})/6]\). The author applies this result to obtain some bounds for digamma and trigamma functions.

MSC:

33B15 Gamma, beta and polygamma functions
26D07 Inequalities involving other types of functions
Full Text: DOI

References:

[1] Adamchik, V. S., On the Hurwitz function for rational arguments, Appl. Math. Comput., 187, 3-12 (2007) · Zbl 1138.11039
[2] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (1965), Dover: Dover New York) · Zbl 0171.38503
[3] Anderson, G.; Qiu, S., A monotonity property of the gamma function, Proc. Amer. Math. Soc., 125, 11, 3355-3362 (1997) · Zbl 0881.33001
[4] Burnside, W., A rapidly convergent series for log N!, Messenger Math., 46, 157-159 (1917) · JFM 46.0340.02
[5] Chen, C.-P.; Srivastava, H. M., Some properties of functions related to the gamma and psi functions, Int. Transforms Spec. Funct., 21, 2, 153-164 (2010) · Zbl 1188.33003
[6] Chen, C.-P.; Srivastava, H. M., A class of two-sided inequalities involving the psi and polygamma functions, Int. Transforms Spec. Func., 21, 7, 523-528 (2010) · Zbl 1200.33003
[7] Choi, J., Some mathematical constants, Appl. Math. Comput., 187, 1, 122-140 (2007) · Zbl 1117.33003
[8] Choi, J.; Cho, Y. J.; Srivastava, H. M., Series involving the Zeta function and multiple Gamma functions, Appl. Math. Comput., 159, 2, 509-537 (2004) · Zbl 1061.33001
[9] Choi, J.; Srivastava, H. M.; Adamchik, V. S., Multiple Gamma and related functions, Appl. Math. Comput., 134, 2-3, 515-533 (2003) · Zbl 1026.33003
[10] Choi, J.; Srivastava, H. M.; Zhang, N.-Y., Integrals involving a function associated with the Euler-Maclaurin summation formula, Appl. Math. Comput., 93, 2-3, 101-116 (1998) · Zbl 0939.33002
[11] Choi, J.; Anderson, P. J.; Srivastava, H. M., Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order \(n\), Appl. Math. Comput., 199, 723-737 (2008) · Zbl 1146.33001
[12] Choi, J.; Srivastava, H. M., Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput., 170, 399-409 (2005) · Zbl 1082.11052
[13] Fitouhi, A.; Brahim, K., Some inequalities for the \(q\)-beta and the q-gamma functions via some \(q\)-integral inequalities, Appl. Math. Comput., 204, 385-394 (2008) · Zbl 1172.33307
[14] Guo, B.-N.; Qi, F., Some properties of the psi and polygamma functions, Hacettepe J. Math. Stat., 39, 2, 219-230 (2010) · Zbl 1203.33002
[15] Kalla, S. L.; Al-Saqabi, B. N.; Khajah, H. G., A unified form of gamma-type distributions, Appl. Math. Comput., 118, 175-187 (2001) · Zbl 1023.60027
[16] Kanemitsu, S.; Kumagai, H.; Srivastava, H. M.; Yoshimoto, M., Some integral and asymptotic formulas associated with the Hurwitz Zeta function, Appl. Math. Comput., 154, 641-664 (2004) · Zbl 1130.11049
[17] Martins, J. S., Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math. Nachr., 139, 281-288 (1988) · Zbl 0677.26010
[18] Mollerup, J.; Bohr, H., Lærebog i Kompleks Analyse, vol. III (1922), Copenhagen
[19] Mortici, C., Sharp inequalities related to Gosper’s formula, C.R. Acad. Sci. Paris, 348, 3-4, 137-140 (2010) · Zbl 1186.33004
[20] Mortici, C., Completely monotonic functions associated with gamma function and applications, Carpathian J. Math., 25, 2, 186-191 (2009) · Zbl 1249.33003
[21] Mortici, C., New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett., 23, 1, 97-100 (2010) · Zbl 1183.33003
[22] Mortici, C., Monotonicity properties of the volume of the unit ball in \(R^n\), Optim. Lett., 4, 3, 457-464 (2010) · Zbl 1225.33006
[23] Mortici, C., Improved convergence towards generalized Euler-Mascheroni constant, Appl. Math. Comput., 215, 9, 3443-3448 (2010) · Zbl 1186.11076
[24] Mortici, C., The proof of Muqattash-Yahdi conjecture, Math. Comput. Model., 51, 9-10, 1154-1159 (2010) · Zbl 1205.33003
[25] Mortici, C., Very accurate estimates of the polygamma function, Asymptot. Anal., 68, 3, 125-134 (2010) · Zbl 1204.33003
[26] Mortici, C., Best estimates of the generalized Stirling formula, Appl. Math. Comput, 215, 11, 4044-4048 (2010) · Zbl 1186.33003
[27] Musès, C., Some new considerations on the Bernoulli numbers the factorial function and Riemann’s zeta function, Appl. Math. Comput., 113, 1, 1-21 (2000) · Zbl 1043.11020
[28] Muqattash, I.; Yahdi, M., Infinite family of approximations of the digamma function, Math. Comput. Model., 43, 1329-1336 (2006) · Zbl 1132.33001
[29] Nadarajah, S., Products, and ratios for a bivariate gamma distribution, Appl. Math. Comput., 171, 581-595 (2005) · Zbl 1080.62029
[30] Özlap, N., A computational method for hypersurfaces in terms of gamma function, Appl. Math. Comput., 161, 721-732 (2005) · Zbl 1069.65021
[31] Qi, F.; Guo, B.-N., Wendel’s and Gautschi’s inequalities: refinements, extensions, and a class of logarithmically completely monotonic functions, Appl. Math. Comput., 205, 1, 281-290 (2010) · Zbl 1173.26315
[32] Qi, F.; Luo, Q.-M.; Guo, B.-N., Darboux’s formula with integral remainder of functions with two independent variables, Appl. Math. Comput., 199, 2, 691-703 (2010) · Zbl 1147.41010
[33] Rassias, T. M.; Srivastava, H. M., Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers, Appl. Math. Comput., 131, 593-605 (2002) · Zbl 1070.11038
[34] Sofo, A., Integral forms of sums associated with harmonic numbers, Appl. Math. Comput., 207, 365-372 (2009) · Zbl 1175.11007
[35] Srivastava, H. M.; Saxena, R. K.; Ram, C., A unified presentation of the Gamma-type functions occurring in diffraction theory and associated probability distributions, Appl. Math. Comput., 162, 931-947 (2005) · Zbl 1063.33004
[36] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1958), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0108.26903
[37] Widder, D. V., The Laplace Transform (1981), Princeton University Press: Princeton University Press Princeton · Zbl 0060.24801
[38] Wu, T.-C.; Leu, S.-H.; Tu, S.-T.; Srivastava, H. M., A certain class of infinite sums associated with digamma functions, Appl. Math. Comput., 105, 1-9 (1999) · Zbl 0933.33002
[39] Yang, S., A further expansion of the Riemann \(ζ\) -function, Appl. Math. Comput., 187, 556-558 (2007) · Zbl 1138.11037
[40] Yang, X.; Kim, Y.-I.; Lo, K., Approximation for constant \(e\) and its applications, Appl. Math. Comput., 206, 50-55 (2008) · Zbl 1172.26325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.