×

Nonideal Rayleigh-Taylor mixing. (English) Zbl 1205.76117

Summary: Rayleigh-Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76F25 Turbulent transport, mixing
Full Text: DOI

References:

[1] Physica. D 12 pp 3– (1984) · Zbl 0577.76047 · doi:10.1016/0167-2789(84)90510-4
[2] A3 pp 2746– (1991)
[3] 16 pp 1668– (2004) · Zbl 1186.76143 · doi:10.1063/1.1688328
[4] 2 pp 562– (2006) · doi:10.1038/nphys361
[5] PNAS 99 (5) pp 2587– (2002) · doi:10.1073/pnas.032568799
[6] PHYS REV E 73 pp 016304– (2006) · doi:10.1103/PhysRevE.73.016304
[7] PHYS REV E 73 pp 056301– (2006) · doi:10.1103/PhysRevE.73.056301
[8] PNAS 104 (19) pp 7741– (2007) · doi:10.1073/pnas.0702871104
[9] 21 pp 014106 1– (2009)
[10] Doklady Akademii Nauk. Rossiyskaya Akademiya Nauk 32 pp 141– (1941)
[11] ACTA MATH APPL SINE 24 pp 355– (2008) · Zbl 1152.76028 · doi:10.1007/s10255-008-8019-8
[12] J GEOM ANAL 3 pp 343– (1993) · Zbl 0836.76017 · doi:10.1007/BF02921318
[13] COMMUN PUR APPL MATH 50 pp 1261– (1997) · Zbl 0909.35109 · doi:10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6
[14] ARCHIVE FOR RATIONAL MECHANICS AND APPLICATIONS 195 pp 225– (2010) · Zbl 1192.35138 · doi:10.1007/s00205-008-0201-x
[15] ESAIMMATH MODEL NUM 40 pp 225– (2006) · Zbl 1124.76010 · doi:10.1051/m2an:2006012
[16] MATH COMPUT 76 pp 1721– (2006)
[17] COMM PUR APPL MATH 23 pp 867– (1970) · doi:10.1002/cpa.3160230603
[18] COMM PDES 34 pp 1041– (2009) · Zbl 1182.35161 · doi:10.1080/03605300902892345
[19] PHYS FLUIDS A 5 pp 1904– (1993) · Zbl 0800.76137 · doi:10.1063/1.858816
[20] J COMPUT PHYS 217 pp 200– (2006) · Zbl 1146.76639 · doi:10.1016/j.jcp.2006.03.030
[21] Physica. D 12 pp 45– (1984) · doi:10.1016/0167-2789(84)90513-X
[22] 12 pp 304– (2000) · Zbl 1149.76361 · doi:10.1063/1.870309
[23] J FLUID MECHANICS 502 pp 233– (2004) · Zbl 1067.76518 · doi:10.1017/S0022112003007419
[24] 16 pp L59– (2004) · Zbl 1186.76439 · doi:10.1063/1.1765171
[25] 17 pp 045101– (2005) · Zbl 1187.76267 · doi:10.1063/1.1864072
[26] Glimm, Physical Review Letters 64 (18) pp 2137– (1990) · Zbl 1050.76543 · doi:10.1103/PhysRevLett.64.2137
[27] Cheng, Chaos (Woodbury, N.Y.) 12 (2) pp 267– (2002) · Zbl 1080.76579 · doi:10.1063/1.1460942
[28] PHYS PLASMAS 8 pp 2883– (2001) · doi:10.1063/1.1362529
[29] HIGH ENERGY DENSITY PHYSICS 6 pp 223– (2010) · doi:10.1016/j.hedp.2010.01.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.