×

An analytical model for electrode-ceramic interaction in multilayer piezoelectric actuators. (English) Zbl 1202.74059

Summary: The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field concentrations ahead of the electrodes in the multilayer piezoelectric actuators are examined. By considering a representative unit in realistic multilayers, the problem is formulated in terms of electric potential between the electrode tips and results in a system of singular integral equations in which the electric potential is taken as unknown function. Effects are investigated of electrode spacing and piezoelectric coupling on the singular electroelastic fields at the electrode tips, and closed-form expressions are given for the electromechanical field near the electrode tips. Exact solution for un-coupled dielectrics is provided, where no piezoelectric coupling is present.

MSC:

74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Dos Santos E., Lucato S.L., Lupascu D.C., Kamlah M., Rodel J., Lynch C.S. (2001). Constrain-induced crack initiation at electrode edge in piezoelectric ceramics. Acta Mater. 49: 2751–2759 · doi:10.1016/S1359-6454(01)00169-0
[2] Wang H., Singh R. (1997). Crack propagation in piezoelectric ceramics: effects of applied electric fields. J. Appl. Phys. 81: 7471–7479 · doi:10.1063/1.365290
[3] Suo Z., Kuo C.M., Barnett D.M., Willis J.R (1992). Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40: 739–765 · Zbl 0825.73584 · doi:10.1016/0022-5096(92)90002-J
[4] Zhang T.Y., Zhao M.H., Tong P. (2002). Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38: 147–289 · doi:10.1016/S0065-2156(02)80104-1
[5] Winzer S.R., Shankar N., Ritter A. (1989). Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 72: 2246–2257 · doi:10.1111/j.1151-2916.1989.tb06069.x
[6] Hao T.H., Gong X., Suo Z. (1996). Fracture mechanics for the design of ceramic multilayer actuators. J. Mech. Phys. Solids 44(1): 23–48 · doi:10.1016/0022-5096(95)00068-2
[7] Shindo Y., Narita F., Sosa H. (1998). Electroelastic analysis of piezoelectric ceramics with surface electrodes. Int. J. Eng. Sci. 36: 1001–1009 · doi:10.1016/S0020-7225(98)00007-X
[8] Ru C.Q. (2000). Exact solution for finite electrode layers embedded at the interface of two piezoelectric half-planes. J. Mech. Phys. Solids 48: 693–708 · Zbl 1058.74035 · doi:10.1016/S0022-5096(99)00056-3
[9] Ye R.Q., He L.H. (2001). Electric and stresses concentrations at the edge of parallel electrodes in piezoelectric ceramics. Int. J. Solids Struct. 38: 6941–6951 · Zbl 1012.74016 · doi:10.1016/S0020-7683(00)00398-X
[10] He L.H., Ye R.Q. (2000). Concentration of electric field near electrodes on piezoelectric layer. Theor. Appl. Fract. Mech. 33: 101–106 · doi:10.1016/S0167-8442(00)00005-7
[11] Chen C.D., Chue C.H. (2003). Fracture mechanics analysis of a composite piezoelectric strip with an internal semi-infinite electrode. Theor. Appl. Fract. Mech. 39: 291–314 · doi:10.1016/S0167-8442(03)00022-3
[12] Shindo Y., Narita F., Horiguchi K., Magara Y., Yoshida M. (2003). Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test. Acta Mater. 51: 4773–4782 · doi:10.1016/S1359-6454(03)00303-3
[13] Li X.F., Lee K.Y. (2004). Electric and elastic behaviors of a piezoelectric ceramic with a charged surface electrode. Smart Mater. Struct. 13: 424–432 · doi:10.1088/0964-1726/13/2/021
[14] Narita F., Yoshida M., Shindo Y. (2004). Electroelastic effect induced by electrode embedded at the interface of two piezoelectric half–planes. Mech. Mater. 36: 999–1006 · doi:10.1016/j.mechmat.2003.04.003
[15] Shindo Y., Yoshida M., Narita F., Horiguchi K. (2004). Electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators: experiment and finite element simulation. J. Mech. Phys. Solids 52: 1109–1124 · Zbl 1112.74386 · doi:10.1016/j.jmps.2003.09.017
[16] Yang F. (2004). Electromechanical interaction of linear piezoelectric materials with a surface electrode. J. Mater. Sci. 39: 2811–2820 · doi:10.1023/B:JMSC.0000021458.32183.73
[17] Wang B.L. (2004). A circular surface electrode on a piezoelectric layer. J. Appl. Phys. 95(8): 4267–4274 · doi:10.1063/1.1651342
[18] Li X.F., Duan X.Y. (2001). Electroelastic analysis of a piezoelectric layer with electrodes. Int. J. Fract. 111: L73–L78
[19] Hom C.L., Shankar N. (1995). A numerical analysis of relaxor ferroelectric multilayered actuators and 2–2 composite arrays. Smart Mater. Stuct. 4: 305–317 · doi:10.1088/0964-1726/4/4/011
[20] Gong X., Suo Z. (1996). Reliability of ceramic multilayer actuators: a nonlinear finite element simulation. J. Mech. Phys. Solids 44: 751–769 · doi:10.1016/0022-5096(95)00026-7
[21] Furuta A., Uchino K. (1993). Dynamic observation of crack propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76: 1615–1617 · doi:10.1111/j.1151-2916.1993.tb03950.x
[22] Wang B.L., Mai Y.W. (2005). An electrode analysis for multilayer ceramic actuators. Sens. Actuators A Phys. 121(1): 203–212 · doi:10.1016/j.sna.2005.01.017
[23] Nied H.F. (1987). Periodic array of cracks in a half plane subjected to arbitrary loading. ASME J. Appl. Mech. 54: 642–648 · Zbl 0618.73110 · doi:10.1115/1.3173082
[24] Erdogan F., Ozturk M. (1995). Periodic cracking of functionally graded coatings. Int. J. Eng. Sci. 33: 2179–2195 · Zbl 0899.73421 · doi:10.1016/0020-7225(95)00065-6
[25] Wang B.L., Mai Y.W. (2006). Periodic antiplane cracks in graded coatings under static or transient loading. ASME J. Appl. Mech. 73(1): 134–142 · Zbl 1111.74682 · doi:10.1115/1.2043190
[26] Suo Z. (1993). Models for breakdown-resistant dielectric and ferroelectric ceramics. J. Mech. Phys. Solids 41: 1155–1176 · doi:10.1016/0022-5096(93)90088-W
[27] Giannakopoulos A.F., Suresh S. (1999). Theory of indentation of piezoelectric materials. Acta Mater. 47: 2153–2164 · doi:10.1016/S1359-6454(99)00076-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.