×

Monodromy groups of Hurwitz-type problems. (English) Zbl 1202.14010

The authors solve the Hurwitz monodromy problem for degree 4 covers. The Hurwitz space \(H_{4,g}\) of all simply branched covers of \({\mathbb{P}}^{1}\) of degree 4 and genus \(g\) is an unramified cover of the space \(P_{2g+6}\) of \((2g+6)-\)tuples of distinct points in \({\mathbb{P}}^{1}.\) They determine the monodromy of \(\pi_{1}(P_{2g+6})\) on the points of the fiber. This turns out to be the same problem as the action of \(\pi_{1}(P_{2g+6})\) on a certain local system of \(({\mathbb Z}/2)-\)vector spaces. Authors generalized their result by treating the analogous local system with \(({\mathbb Z}/N)\) coefficients, \(3 \nmid N,\) in place of \(({\mathbb Z}/2).\) This in turn allow to answer a question of Ellenberg concerning families of Galois covers of \({\mathbb{P}}^{1}\) with deck group \(({\mathbb Z}/N)^{2}: S_{3}.\)
Theorem 1. Let \(g > 1.\) Then monodromy group \(G_{2}\) of \(H_{4,g} \rightarrow P_{2g+6}\) fits into the split exact sequence \[ 1 \rightarrow \prod_{\Omega} Sp(2g+2,{\mathbb Z}/2) \rightarrow G_{2} \rightarrow PSp(2g+4,{\mathbb Z}/3) \rightarrow 1, \] where \(\Omega = {\mathbb{P}}^{2g+3}({\mathbb Z}/3))\) and \(PSp(2g+4,{\mathbb Z}/3)\) permutes the factors of the product in the obvious way.
Theorem 2. Suppose \(3 \nmid N\) and \(g \geq 0\) (\(g > 1\) if \(N\) is even). Then the monodromy group \(G_{N}\) of \(V_{N}\) fits into an exact sequence \[ 1 \rightarrow \prod_{\Omega} Sp(2g+2,{\mathbb Z}/N) \rightarrow G_{N} \rightarrow PSp(2g+4,{\mathbb Z}/3) \rightarrow 1, \] where \(\Omega\) and the action of \(PSp(2g+4,{\mathbb Z}/3)\) are as in Theorem 1.

MSC:

14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14H30 Coverings of curves, fundamental group
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
57M10 Covering spaces and low-dimensional topology

Software:

GAP

References:

[1] Abe, E., Automorphisms of Chevalley groups over commutative rings, Algebra i Analiz. Algebra i Analiz, St. Petersburg Math. J., 5, 2, 287-300 (1994), (in Russian); translation in: · Zbl 0842.20039
[2] A’Campo, N., Tresses, monodromie et le groupe symplectique, Comment. Math. Helv., 54, 2, 318-327 (1979) · Zbl 0441.32004
[3] Achter, J. D.; Pries, R., The integral monodromy of hyperelliptic and trielliptic curves, Math. Ann., 338, 1, 187-206 (2007) · Zbl 1129.11027
[4] Arnol’d, V. I.; Guseĭn-Zade, S. M.; Varchenko, A. N., Singularities of Differentiable Maps, vol. II (1988), Birkhäuser · Zbl 0659.58002
[5] Biggers, R.; Fried, M., Irreducibility of moduli spaces of cyclic unramified covers of genus \(g\) curves, Trans. Amer. Math. Soc., 295, 1, 59-70 (1986) · Zbl 0601.14022
[6] Clebsch, A., Zur Theorie der Riemann’schen Fläche, Math. Ann., 6, 2, 216-230 (1873) · JFM 05.0285.03
[7] Cohen, D. B., The Hurwitz monodromy group, J. Algebra, 32, 3, 501-517 (1974) · Zbl 0343.20002
[8] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1985), Oxford University Press · Zbl 0568.20001
[9] Eisenbud, D.; Elkies, N.; Harris, J.; Speiser, R., On the Hurwitz scheme and its monodromy, Compos. Math., 77, 1, 95-117 (1991) · Zbl 0726.14022
[11] Fulton, W., Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math., 90, 3, 542-575 (1969) · Zbl 0194.21901
[12] The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4.10 (2007)
[13] Gross, F.; Kovács, L., On normal subgroups which are direct products, J. Algebra, 90, 133-168 (1984) · Zbl 0594.20018
[14] Hall, C., Big symplectic or orthogonal monodromy modulo \(ℓ\), Duke Math. J., 141, 1, 179-203 (2008) · Zbl 1205.11062
[15] MacLachlan, C., On representations of Artin’s braid group, Michigan Math. J., 25, 2, 235-244 (1978) · Zbl 0366.20032
[16] Petechuk, V. M., Isomorphisms of symplectic groups over commutative rings, Algebra Logic, 22, 5, 397-405 (1983) · Zbl 0542.20029
[17] Suzuki, M., Group Theory. I, Grundlehren Math. Wiss., vol. 247 (1982), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0472.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.