×

Multiscale modelling of fluid and drug transport in vascular tumours. (English) Zbl 1198.92028

Summary: A model for fluid and drug transport through the leaky neovasculature and porous interstitium of a solid tumour is developed. The transport problems are posed on a micro-scale characterized by the inter-capillary distance, and the method of multiple scales is used to derive the continuum equations describing fluid and drug transport on the length scale of the tumour (under the assumption of a spatially periodic microstructure). The fluid equations comprise a double porous medium, with coupled Darcy flow through the interstitium and vasculature, whereas the drug equations comprise advection-reaction equations; in each case the dependence of the transport coefficients on the vascular geometry is determined by solving micro-scale cell problems.

MSC:

92C50 Medical applications (general)
92C35 Physiological flow
76S05 Flows in porous media; filtration; seepage
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Arbogast, T., Douglas, J., Hornung, U., 1990. Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836. · Zbl 0698.76106 · doi:10.1137/0521046
[2] Arbogast, T., Douglas, J., Hornung, U., 1991. Modeling of naturally fractured reservoirs by formal homogenization techniques. In: Frontiers in Pure and Applied Mathematics, pp. 1–19. Elsevier, Amsterdam. · Zbl 0727.76110
[3] Arbogast, T., Lehr, H., 2006. Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10, 291–302. · Zbl 1197.76122 · doi:10.1007/s10596-006-9024-8
[4] Beavers, G., Joseph, D., 1967. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207. · doi:10.1017/S0022112067001375
[5] Cameliet, P., Jain, R., 2000. Angiogenesis in cancer and other diseases. Nature 407, 249–257. · doi:10.1038/35025220
[6] Chapman, S., Shipley, R., Jawad, R., 2008. Multiscale modeling of fluid transport in tumors. Bull. Math. Biol. 70, 2334–2357. · Zbl 1169.92307 · doi:10.1007/s11538-008-9349-7
[7] Fåhraeus, R., 1928. Die strölmungsverhältnisse und die verteilung der blutzellen im gefäbsystem. Zur frage der bedeutung der intravasculären erythrocytenaggregation. Klin. Wochenschr. 7, 100–106. · doi:10.1007/BF01738786
[8] Fåhraeus, R., Lindqvist, T., 1931. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568.
[9] Hashizume, H., Baluk, P., Morikawa, S., McLean, J., Thurston, G., Roberge, S., Jain, R., McDonald, D., 2000. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380. · doi:10.1016/S0002-9440(10)65006-7
[10] Heldin, C., Rubin, K., Pietras, K., Ostman, A., 2004. A high interstitial fluid pressure–an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813. · doi:10.1038/nrc1456
[11] Hicks, K., Fleming, Y., Siim, B., Koch, C., Wilson, W., 1998. Extravascular diffusion of tirapazamine: Effect of metabolic consumption assessed using the multicellular layer model. Int. J. Radiat. Oncol. Biol. Phys. 42, 641–649. · doi:10.1016/S0360-3016(98)00268-5
[12] Hicks, K., Pruijn, F., Secomb, T.W., Hay, M., Hsu, R.H., Brown, J., Denny, W., Dewhirst, M., Wilson, W., 2006. Use of three-dimensional tissue cultures to model extravascular transport and predict In vivo activity of hypoxia-targeted anticancer drugs. J. Nat. Cancer Inst. 98, 1118–1128. · doi:10.1093/jnci/djj306
[13] Intaglietta, M., Silverman, N., Tompkins, W., 1975. Capillary flow velocity in vivo and in situ by television methods. Microvasc. Res. 10, 165–179. · doi:10.1016/0026-2862(75)90004-7
[14] Jäger, W., Mikelić, A., 2000. On the interface boundary conditions by Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127. · Zbl 0969.76088 · doi:10.1137/S003613999833678X
[15] Jäger, W., Mikelić, A., Neuss, M., 2001. Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22, 2006–2028. · Zbl 0980.35124 · doi:10.1137/S1064827599360339
[16] Jain, R., 1987. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6, 559–593. · doi:10.1007/BF00047468
[17] Jain, R., 1989. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl. Cancer Inst. 81(8), 570–576. · doi:10.1093/jnci/81.8.570
[18] Jain, R., 1990. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 9, 253–266. · doi:10.1007/BF00046364
[19] Jang, S., Wientjies, M., Lu, D., Au, J., 2003. Drug delivery and transport to solid tumors. Pharm. Res. 20, 1337–1350. · doi:10.1023/A:1025785505977
[20] Jones, I., 1973. Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc. 73, 231–238. · Zbl 0262.76061 · doi:10.1017/S0305004100047642
[21] Kenner, T., 1989. The measurement of blood density and its meaning. Basic Res. Cardiol. 84, 111–124. · doi:10.1007/BF01907921
[22] Kirkpatrick, J., Brizel, D.M., Dewhirst, M., 2003. A mathematical model of tumor oxygen and glucose mass transport and metabolism with complex reaction kinetics. Radiat. Res. 159, 336–344. · doi:10.1667/0033-7587(2003)159[0336:AMMOTO]2.0.CO;2
[23] Konerding, M., Malkusch, W., Klapthor, B., Van Ackern, C., Fait, E., Hill, S., Parkins, C., Chaplin, D., Presta, M., Denekamp, J., 1999. Evidence for characteristic vascular patterns in solid tumours: Quantitative studies using corrosion casts. Br. J. Cancer 80, 724. · doi:10.1038/sj.bjc.6690416
[24] Konerding, M., Fait, E., Gaumann, A., et al., 2001. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br. J. Cancer 84, 1354–1362. · doi:10.1054/bjoc.2001.1809
[25] Less, J., Skalak, T., Sevick, E., Jain, R., 1991. Microvascular architecture in a mammary carcinoma: Branching patterns and vessel dimensions. Cancer Res. 51, 265–273.
[26] Minchinton, A.I., Tannock, I.F., 2006. Drug penetration in solid tumours. Nat. Rev. Cancer 6(8), 583–592. · doi:10.1038/nrc1893
[27] Modok, S., Hyde, P., Mellor, H., Roose, T., Callaghan, R., 2006. Diffusivity and distribution of vinblastine in three-dimensional tumour tissue: Experimental and mathematical modelling. Eur. J. Cancer 42, 2404–2413. · doi:10.1016/j.ejca.2006.05.020
[28] Modok, S., Scott, R., Alderden, R., Hall, M., Mellor, H., Bohic, S., Roose, T., Hambley, T., Callaghan, R., 2007. Transport kinetics of four-and six-coordinate platinum compounds in the multicell layer tumour model. Br. J. Cancer 97, 194–200. · doi:10.1038/sj.bjc.6603854
[29] Pries, A., Secomb, T., 2005. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289, H2657–H2664. · doi:10.1152/ajpheart.00297.2005
[30] Pries, A., Ley, K., Claassen, M., Gaehtgens, P., 1989. Red cell distribution at microvascular bifurcations. Microvasc. Res. 38, 81–101. · doi:10.1016/0026-2862(89)90018-6
[31] Pries, A., Neuhaus, D., Gaehtgens, P., 1992. Blood viscosity in tube flow: Dependence on diameter and hematocrit. Am. J. Physiol. 263, H1770–H1778.
[32] Pries, A., Cornelissen, A., Sloot, A., Hinkeldey, M., Dreher, M., Höpfner, M., Dewhirst, M., Secomb, T., 2009. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput. Biol. 5.
[33] Rand, P., Lacombe, E., Hunt, H., Austin, W., 1964. Viscosity of normal human blood under normothermic and hypothermic conditions. J. Appl. Physiol. 19, 117–122.
[34] Saffman, P., 1971. On the boundary condition at the surface of a porous medium. Stud. Appl. Math. I, volume 2, 93–101. · Zbl 0271.76080
[35] Shipley, R.J., 2008. Multiscale modelling of fluid and drug transport in vascular tumours. PhD thesis, University of Oxford. · Zbl 1198.92028
[36] Yao, D., Ding, S., Burchell, B., Wolf, C.R., Friedberg, T., 2000. Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: Implications for the development of drug resistance. J. Pharmacol. Exp. Ther. 294, 387–395.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.