×

Grassmannian spectral shooting. (English) Zbl 1196.65132

Summary: We present a new numerical method for computing the pure-point spectrum associated with the linear stability of coherent structures. In the context of the Evans function shooting and matching approach, all the relevant information is carried by the flow projected onto the underlying Grassmann manifold. We show how to numerically construct this projected flow in a stable and robust manner. In particular, the method avoids representation singularities by, in practice, choosing the best coordinate patch representation for the flow as it evolves.
The method is analytic in the spectral parameter and of complexity bounded by the order of the spectral problem cubed. For large systems, it represents a competitive method to those recently developed that are based on continuous orthogonalization. We demonstrate this by comparing the two methods in three applications: Boussinesq solitary waves, autocatalytic travelling waves and the Ekman boundary layer.

MSC:

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations

Software:

MATCONT

References:

[1] Hisham Abou-Kandil, Gerhard Freiling, Vlad Ionescu, and Gerhard Jank, Matrix Riccati equations, Systems & Control: Foundations & Applications, Birkhäuser Verlag, Basel, 2003. In control and systems theory. · Zbl 1027.93001
[2] J. Alexander, R. Gardner, and C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math. 410 (1990), 167 – 212. · Zbl 0705.35070
[3] J. C. Alexander and R. Sachs, Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation, Nonlinear World 2 (1995), no. 4, 471 – 507. · Zbl 0833.34046
[4] L. Allen, Modelling dolphin hydrodynamics: The numerical analysis and hydrodynamic stability of flow past compliant surfaces, Ph.D. Thesis, University of Surrey, 2001.
[5] Leanne Allen and Thomas J. Bridges, Numerical exterior algebra and the compound matrix method, Numer. Math. 92 (2002), no. 2, 197 – 232. · Zbl 1012.65079 · doi:10.1007/s002110100365
[6] Leanne Allen and Thomas J. Bridges, Hydrodynamic stability of the Ekman boundary layer including interaction with a compliant surface: a numerical framework, Eur. J. Mech. B Fluids 22 (2003), no. 3, 239 – 258. · Zbl 1033.76015 · doi:10.1016/S0997-7546(03)00036-0
[7] Nairo D. Aparicio, Simon J. A. Malham, and Marcel Oliver, Numerical evaluation of the Evans function by Magnus integration, BIT 45 (2005), no. 2, 219 – 258. · Zbl 1078.65549 · doi:10.1007/s10543-005-0001-8
[8] N. J. Balmforth, R. V. Craster, and S. J. A. Malham, Unsteady fronts in an autocatalytic system, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1984, 1401 – 1433. · Zbl 0945.35045 · doi:10.1098/rspa.1999.0366
[9] J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves, Philos. Trans. Roy. Soc. London Ser. A 334 (1991), no. 1633, 1 – 24. , https://doi.org/10.1098/rsta.1991.0001 J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. II. An initial value problem with an immobilized or nearly immobilized autocatalyst, Philos. Trans. Roy. Soc. London Ser. A 336 (1991), no. 1644, 497 – 539. · Zbl 0762.35048 · doi:10.1098/rsta.1991.0098
[10] S. Billey, Grassmannians and other Schubert varieties, talk, April 14, 2007.
[11] David Bindel, James Demmel, and Mark Friedman, Continuation of invariant subspaces in large bifurcation problems, SIAM J. Sci. Comput. 30 (2008), no. 2, 637 – 656. · Zbl 1160.65065 · doi:10.1137/060654219
[12] Sergio Bittanti, Alan J. Laub, and Jan C. Willems , The Riccati equation, Communications and Control Engineering Series, Springer-Verlag, Berlin, 1991. · Zbl 0734.34004
[13] Ȧke Björck and Gene H. Golub, Numerical methods for computing angles between linear subspaces, Math. Comp. 27 (1973), 579 – 594. · Zbl 0282.65031
[14] Thomas J. Bridges, Gianne Derks, and Georg Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework, Phys. D 172 (2002), no. 1-4, 190 – 216. · Zbl 1047.37053 · doi:10.1016/S0167-2789(02)00655-3
[15] Thomas J. Bridges and Sebastian Reich, Computing Lyapunov exponents on a Stiefel manifold, Phys. D 156 (2001), no. 3-4, 219 – 238. · Zbl 0979.37044 · doi:10.1016/S0167-2789(01)00283-4
[16] L.Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. Thesis, Indiana University, Bloomington, 1998. · Zbl 0980.65092
[17] Leon Q. Brin, Numerical testing of the stability of viscous shock waves, Math. Comp. 70 (2001), no. 235, 1071 – 1088. · Zbl 0980.65092
[18] Roger W. Brockett and Christopher I. Byrnes, On the algebraic geometry of the output feedback pole placement map, Proceedings of the 18th IEEE Conference on Decision and Control (Fort Lauderdale, Fla., 1979) IEEE, New York, 1979, pp. 754 – 757. Roger W. Brockett and Christopher I. Byrnes, Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint, IEEE Trans. Automat. Control 26 (1981), no. 1, 271 – 284. · Zbl 0462.93026 · doi:10.1109/TAC.1981.1102571
[19] Elena Celledoni and Arieh Iserles, Approximating the exponential from a Lie algebra to a Lie group, Math. Comp. 69 (2000), no. 232, 1457 – 1480. · Zbl 0956.65009
[20] Elena Celledoni and Brynjulf Owren, On the implementation of Lie group methods on the Stiefel manifold, Numer. Algorithms 32 (2003), no. 2-4, 163 – 183. · Zbl 1029.65072 · doi:10.1023/A:1024079724094
[21] H.-C. Chang, E.A. Demekhin and D.I. Kopelevich, Local stability theory of solitary pulses in an active medium, Physica D 97 (1996), pp. 353-375. · Zbl 1194.37049
[22] S. S. Chern, Complex manifolds without potential theory, Van Nostrand Mathematical Studies, No. 15, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0158.33002
[23] C.-C. Chou and R.E. Wyatt, Computational method for the quantum Hamilton-Jacobi equation: Bound states in one dimension, J. Chem. Phys. 125(174103) (2006), pp. 1-10.
[24] C.-C. Chou and R.E. Wyatt, Riccati differential equation for quantum mechanical bound states: Comparison of numerical integrators, Int. J. Quant. Chem. 108 (2008), pp.238-248.
[25] S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function, SIAM J. Appl. Dyn. Syst. 3 (2004), no. 4, 574 – 600. · Zbl 1067.92019 · doi:10.1137/040605953
[26] I. Coskun, Grassmannians: The first example of a moduli space, MIT Open Course Ware available at http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-727Spring-2006.
[27] Jian Deng and Shunsaku Nii, Infinite-dimensional Evans function theory for elliptic eigenvalue problems in a channel, J. Differential Equations 225 (2006), no. 1, 57 – 89. · Zbl 1115.35091 · doi:10.1016/j.jde.2005.09.007
[28] Gianne Derks, Ute Ebert, and Bernard Meulenbroek, Laplacian instability of planar streamer ionization fronts — an example of pulled front analysis, J. Nonlinear Sci. 18 (2008), no. 5, 551 – 590. · Zbl 1168.37023 · doi:10.1007/s00332-008-9023-0
[29] A. Dhooge, W. Govaerts, and Yu. A. Kuznetsov, MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software 29 (2003), no. 2, 141 – 164. · Zbl 1070.65574 · doi:10.1145/779359.779362
[30] L. Dieci and E.S. Van Vleck, Orthonormal integrators based on Householder and Givens transformations, Future Generation Computer Systems 19(3) (2003) Special issue: Geometric numerical algorithms, pp. 363-373.
[31] Arjen Doelman, Robert A. Gardner, and Tasso J. Kaper, Stability analysis of singular patterns in the 1D Gray-Scott model: a matched asymptotics approach, Phys. D 122 (1998), no. 1-4, 1 – 36. · Zbl 0943.34039 · doi:10.1016/S0167-2789(98)00180-8
[32] L. O’C. Drury, Numerical solution of Orr-Sommerfeld-type equations, J. Comput. Phys. 37 (1980), no. 1, 133 – 139. · Zbl 0448.65057 · doi:10.1016/0021-9991(80)90008-X
[33] Alan Edelman, Tomás A. Arias, and Steven T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1999), no. 2, 303 – 353. · Zbl 0928.65050 · doi:10.1137/S0895479895290954
[34] John W. Evans, Nerve axon equations. IV. The stable and the unstable impulse, Indiana Univ. Math. J. 24 (1974/75), no. 12, 1169 – 1190. · Zbl 0317.92006 · doi:10.1512/iumj.1975.24.24096
[35] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. · Zbl 0878.14034
[36] Fritz Gesztesy, Yuri Latushkin, and Konstantin A. Makarov, Evans functions, Jost functions, and Fredholm determinants, Arch. Ration. Mech. Anal. 186 (2007), no. 3, 361 – 421. · Zbl 1134.34004 · doi:10.1007/s00205-007-0071-7
[37] Fritz Gesztesy, Yuri Latushkin, and Kevin Zumbrun, Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves, J. Math. Pures Appl. (9) 90 (2008), no. 2, 160 – 200 (English, with English and French summaries). · Zbl 1161.47058 · doi:10.1016/j.matpur.2008.04.001
[38] S.K. Gray and D.E. Manopoulous, Symplectic integrators tailored to the time-dependent Schrödinger equation, J. Chem. Phys. 104(18) (1996), pp. 7099-7112.
[39] Leon Greenberg and Marco Marletta, Numerical solution of non-self-adjoint Sturm-Liouville problems and related systems, SIAM J. Numer. Anal. 38 (2001), no. 6, 1800 – 1845. · Zbl 1001.34020 · doi:10.1137/S0036142999358743
[40] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. · Zbl 0836.14001
[41] V. V. Gubernov, G. N. Mercer, H. S. Sidhu, and R. O. Weber, Evans function stability of non-adiabatic combustion waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2048, 2415 – 2435. · Zbl 1063.80008 · doi:10.1098/rspa.2004.1285
[42] Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2002. Structure-preserving algorithms for ordinary differential equations. · Zbl 0994.65135
[43] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[44] Robert Hermann and Clyde F. Martin, Applications of algebraic geometry to systems theory. I, IEEE Trans. Automatic Control AC-22 (1977), no. 1, 19 – 25. · Zbl 0355.93013
[45] R. Hermann and C. Martin, Lie theoretic aspects of the Riccati equation, NASA Report WP2-3:30.
[46] R. Hermann and C. Martin, Periodic solutions of the Riccati equation, NASA Report TP3-3:00, IEEE (1980).
[47] Robert Hermann and Clyde Martin, Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations. I. General Lie-theoretic methods, Math. Systems Theory 15 (1981/82), no. 3, 277 – 284. · Zbl 0508.58034 · doi:10.1007/BF01786984
[48] Robert Hermann and Clyde Martin, Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations. II, Math. Systems Theory 16 (1983), no. 4, 297 – 306. · Zbl 0527.58033 · doi:10.1007/BF01744584
[49] Jeffrey Humpherys and Kevin Zumbrun, An efficient shooting algorithm for Evans function calculations in large systems, Phys. D 220 (2006), no. 2, 116 – 126. · Zbl 1101.65082 · doi:10.1016/j.physd.2006.07.003
[50] Jeffrey Humpherys, Björn Sandstede, and Kevin Zumbrun, Efficient computation of analytic bases in Evans function analysis of large systems, Numer. Math. 103 (2006), no. 4, 631 – 642. · Zbl 1104.65081 · doi:10.1007/s00211-006-0004-7
[51] J.M. Hutson, Coupled channel methods for solving the bound-state Schrödinger equation, Computer Physics Communications 84 (1994), pp. 1-18. · Zbl 0868.65053
[52] A. Iserles, A. Marthinsen, and S. P. Nørsett, On the implementation of the method of Magnus series for linear differential equations, BIT 39 (1999), no. 2, 281 – 304. · Zbl 0933.65077 · doi:10.1023/A:1022393913721
[53] Arieh Iserles and Antonella Zanna, Efficient computation of the matrix exponential by generalized polar decompositions, SIAM J. Numer. Anal. 42 (2005), no. 5, 2218 – 2256. · Zbl 1084.65040 · doi:10.1137/S0036142902415936
[54] Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, and Antonella Zanna, Lie-group methods, Acta numerica, 2000, Acta Numer., vol. 9, Cambridge Univ. Press, Cambridge, 2000, pp. 215 – 365. · Zbl 1064.65147 · doi:10.1017/S0962492900002154
[55] L.Gr. Ixaru, Special techniques related to the CP methods for the coupled channel Schrödinger equation, talk given at Workshop Numerical Approach of Oscillatory functions 2008, Ghent.
[56] B.R. Johnson, New numerical methods applied to solving the one-dimensional eigenvalue problem, J. Chem. Phys. 67(9) (1977), pp. 4086-4093.
[57] Todd Kapitula and Björn Sandstede, Instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg-Landau equation, J. Opt. Soc. Amer. B Opt. Phys. 15 (1998), no. 11, 2757 – 2762. · Zbl 0935.35150 · doi:10.1364/JOSAB.15.002757
[58] S. L. Kleiman and Dan Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061 – 1082. · Zbl 0272.14016 · doi:10.2307/2317421
[59] Yuji Kodama, Young diagrams and \?-soliton solutions of the KP equation, J. Phys. A 37 (2004), no. 46, 11169 – 11190. · Zbl 1086.35093 · doi:10.1088/0305-4470/37/46/006
[60] A. Kresch, Flag varieties and Schubert calculus, Algebraic groups, Universitätsverlag Göttingen, Göttingen, 2007, pp. 73 – 86. · Zbl 1121.14303
[61] S. Krogstad, A low complexity Lie group method on the Stiefel manifold, Reports in Informatics, ISSN 0333-3590, 2001. · Zbl 1022.65077
[62] S. Lafortune and J. Lega, Instability of local deformations of an elastic rod, Phys. D 182 (2003), no. 1-2, 103 – 124. · Zbl 1027.74033 · doi:10.1016/S0167-2789(03)00125-8
[63] Stéphane Lafortune and Pavel Winternitz, Superposition formulas for pseudounitary matrix Riccati equations, J. Math. Phys. 37 (1996), no. 3, 1539 – 1550. · Zbl 0866.34006 · doi:10.1063/1.531448
[64] V. Ledoux, Study of special algorithms for solving Sturm-Liouville and Schrödinger equations. Ph.D. Thesis, Universiteit Gent, 2007.
[65] V. Ledoux, M. Van Daele and G. Vanden Berghe, A numerical procedure to solve the multichannel Schrödinger eigenvalue problem, Comp. Phys. Commun. 176 (2007), pp. 191-199. · Zbl 1196.81108
[66] Veerle Ledoux, Simon J. A. Malham, Jitse Niesen, and Vera Thümmler, Computing stability of multidimensional traveling waves, SIAM J. Appl. Dyn. Syst. 8 (2009), no. 1, 480 – 507. · Zbl 1167.65412 · doi:10.1137/080724009
[67] J.C. Light and R.B. Walker, An R matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys. 65(10) (1976), p. 4272-4282.
[68] Wilhelm Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954), 649 – 673. · Zbl 0056.34102 · doi:10.1002/cpa.3160070404
[69] D.E. Manopoulous and S.K. Gray, Symplectic integrators for the multichannel Schrödinger equation, J. Chem. Phys. 102(23) (1995), pp. 9214-9227.
[70] Jerrold E. Marsden and Tudor S. Ratiu, Introduction to mechanics and symmetry, 2nd ed., Texts in Applied Mathematics, vol. 17, Springer-Verlag, New York, 1999. A basic exposition of classical mechanical systems. · Zbl 0933.70003
[71] Clyde F. Martin and Robert Hermann, Applications of algebraic geometry to systems theory. II. Feedback and pole placement for linear Hamiltonian systems, Proc. IEEE 65 (1977), no. 6, 841 – 848. Clyde Martin and Robert Hermann, Applications of algebraic geometry to systems theory. III. The McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants, SIAM J. Control Optim. 16 (1978), no. 5, 743 – 755. , https://doi.org/10.1137/0316050 Robert Hermann and Clyde Martin, Applications of algebraic geometry to systems theory. V. Ramifications of the Macmillan degree, The 1976 Ames Research Center (NASA) Conference on Geometric Control Theory (Moffett Field, Calif., 1976) Math Sci Press, Brookline, Mass., 1977, pp. 67 – 120. Lie Groups: History Frontiers and Appl., Vol. VII. Clyde Martin and Robert Hermann, Applications of algebraic geometry to systems theory. VI. Infinite dimensional linear systems and properties of analytic functions, The 1976 Ames Research Center (NASA) Conference on Geometric Control Theory (Moffett Field, Calif., 1976) Math Sci Press, Brookline, Mass., 1977, pp. 121 – 155. Lie Groups: History Frontiers and Appl., Vol. VII.
[72] M. J. Metcalf, J. H. Merkin, and S. K. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. Roy. Soc. London Ser. A 447 (1994), no. 1929, 155 – 174. · Zbl 0809.92027 · doi:10.1098/rspa.1994.0133
[73] Carl Meyer, Matrix analysis and applied linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.). · Zbl 0962.15001
[74] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. · Zbl 0298.57008
[75] Cleve Moler and Charles Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003), no. 1, 3 – 49. · Zbl 1030.65029 · doi:10.1137/S00361445024180
[76] Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002. · Zbl 1044.53022
[77] Hans Munthe-Kaas, High order Runge-Kutta methods on manifolds, Proceedings of the NSF/CBMS Regional Conference on Numerical Analysis of Hamiltonian Differential Equations (Golden, CO, 1997), 1999, pp. 115 – 127. · Zbl 0934.65077 · doi:10.1016/S0168-9274(98)00030-0
[78] A. Zanna and H. Z. Munthe-Kaas, Generalized polar decompositions for the approximation of the matrix exponential, SIAM J. Matrix Anal. Appl. 23 (2001/02), no. 3, 840 – 862. · Zbl 0999.65060 · doi:10.1137/S0895479800377551
[79] Shunsaku Nii, An extension of the stability index for travelling-wave solutions and its application to bifurcations, SIAM J. Math. Anal. 28 (1997), no. 2, 402 – 433. · Zbl 0979.35072 · doi:10.1137/S003614109427878X
[80] Erkki Oja, A simplified neuron model as a principal component analyzer, J. Math. Biol. 15 (1982), no. 3, 267 – 273. · Zbl 0488.92012 · doi:10.1007/BF00275687
[81] Peter J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995. · Zbl 0837.58001
[82] Robert L. Pego and Michael I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London Ser. A 340 (1992), no. 1656, 47 – 94. · Zbl 0776.35065 · doi:10.1098/rsta.1992.0055
[83] A. Postnikov, Total positivity, Grassmannians, and Networks, arXiv:math/060976v1 27 Sep 2006.
[84] Heinz Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), no. 1, 499 – 518 (German). · JFM 52.0455.01 · doi:10.1007/BF01206624
[85] John D. Pryce, Numerical solution of Sturm-Liouville problems, Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. · Zbl 0795.65053
[86] M. S. Ravi, Joachim Rosenthal, and Xiaochang Wang, Dynamic pole assignment and Schubert calculus, SIAM J. Control Optim. 34 (1996), no. 3, 813 – 832. · Zbl 0856.93043 · doi:10.1137/S036301299325270X
[87] J. Rosenthal, The Hermann-Martin curve, preprint report. · Zbl 1203.93094
[88] Björn Sandstede, Stability of travelling waves, Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 983 – 1055. · Zbl 1056.35022 · doi:10.1016/S1874-575X(02)80039-X
[89] Björn Sandstede and Arnd Scheel, Curvature effects on spiral spectra: generation of point eigenvalues near branch points, Phys. Rev. E (3) 73 (2006), no. 1, 016217, 8. · Zbl 1210.37053 · doi:10.1103/PhysRevE.73.016217
[90] Jeremy Schiff and S. Shnider, A natural approach to the numerical integration of Riccati differential equations, SIAM J. Numer. Anal. 36 (1999), no. 5, 1392 – 1413. · Zbl 0936.34027 · doi:10.1137/S0036142996307946
[91] C. R. Schneider, Global aspects of the matrix Riccati equation, Math. Systems Theory 7 (1973), no. 3, 281 – 286. · Zbl 0273.58006 · doi:10.1007/BF01795945
[92] Mark A. Shayman, Phase portrait of the matrix Riccati equation, SIAM J. Control Optim. 24 (1986), no. 1, 1 – 65. · Zbl 0594.34044 · doi:10.1137/0324001
[93] Frank Sottile, Rational curves on Grassmannians: systems theory, reality, and transversality, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) Contemp. Math., vol. 276, Amer. Math. Soc., Providence, RI, 2001, pp. 9 – 42. · Zbl 1095.14503 · doi:10.1090/conm/276/04509
[94] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103
[95] Jonathan Swinton and John Elgin, Stability of travelling pulse solutions to a laser equation, Phys. Lett. A 145 (1990), no. 8-9, 428 – 433. · doi:10.1016/0375-9601(90)90307-A
[96] David Terman, Stability of planar wave solutions to a combustion model, SIAM J. Math. Anal. 21 (1990), no. 5, 1139 – 1171. · Zbl 0723.35011 · doi:10.1137/0521063
[97] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. · Zbl 0516.58001
[98] W-Y. Yan, U. Helmke and J.B. Moore, Global analysis of Oja’s flow for neural networks, IEEE Transactions on Neural Networks 5(5) (1994), pp. 674-683.
[99] Xingren Ying and I. Norman Katz, A reliable argument principle algorithm to find the number of zeros of an analytic function in a bounded domain, Numer. Math. 53 (1988), no. 1-2, 143 – 163. · Zbl 0628.65015 · doi:10.1007/BF01395882
[100] M. I. Zelikin, Control theory and optimization. I, Encyclopaedia of Mathematical Sciences, vol. 86, Springer-Verlag, Berlin, 2000. Homogeneous spaces and the Riccati equation in the calculus of variations; A translation of Homogeneous spaces and the Riccati equation in the calculus of variations (Russian), ”Faktorial”, Moscow, 1998; Translation by S. A. Vakhrameev. · Zbl 0951.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.