×

Non-linear partial differential equations with discrete state-dependent delays in a metric space. (English) Zbl 1194.35488

Summary: We investigate a class of non-linear partial differential equations with discrete state-dependent delays. The existence and uniqueness of strong solutions for initial functions from a Banach space are proved. To get the well-posed initial value problem, we restrict our study to a smaller metric space, construct the dynamical system and prove the existence of a compact global attractor.

MSC:

35R10 Partial functional-differential equations
35B41 Attractors
35K57 Reaction-diffusion equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
37G35 Dynamical aspects of attractors and their bifurcations

References:

[1] Hale, J. K.; Verduyn Lunel, S. M., Theory of Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 1052.93028
[2] Diekmann, O.; van Gils, S.; Verduyn Lunel, S.; Walther, H.-O., Delay Equations: Functional, Complex, and Nonlinear Anal. (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0826.34002
[3] Azbelev, N. V.; Maksimov, V. P.; Rakhmatullina, L. F., Introduction to the Theory of Functional Differential Equations (1991), Nauka: Nauka Moscow · Zbl 0725.34071
[4] Travis, C. C.; Webb, G. F., Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., 200, 395-418 (1974) · Zbl 0299.35085
[5] Chueshov, I. D., On a certain system of equations with delay, occurring in aeroelasticity, J. Soviet Math., 58, 385-390 (1992) · Zbl 0783.73046
[6] Chueshov, I. D.; Rezounenko, A. V., Global attractors for a class of retarded quasilinear partial differential equations, C. R. Acad. Sci., Paris Ser. I, 321, 607-612 (1995), Detailed version: Math. Physics, Analysis, Geometry, 2 (3) (1995) 363-383 · Zbl 0845.35129
[7] Boutet de Monvel, L.; Chueshov, I. D.; Rezounenko, A. V., Inertial manifolds for retarded semilinear parabolic equations, Nonlinear Anal., 34, 907-925 (1998) · Zbl 0954.34064
[8] Wu, J., Theory and Applications of Partial Functional Differential Equations (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0870.35116
[9] Walther, H.-O., Stable periodic motion of a system with state dependent delay, Differ. Integral Equ., 15, 923-944 (2002) · Zbl 1034.34085
[10] Walther, H.-O., The solution manifold and \(C^1\)-smoothness for differential equations with state-dependent delay, J. Differ. Equ., 195, 1, 46-65 (2003) · Zbl 1045.34048
[11] Walther, H.-O., On a model for soft landing with state-dependent delay, J. Dyn. Differ. Equ., 19, 3, 593-622 (2007) · Zbl 1134.34037
[12] Krisztin, T., A local unstable manifold for differential equations with state-dependent delay, Discrete Contin. Dyn. Syst., 9, 933-1028 (2003) · Zbl 1048.34123
[13] Mallet-Paret, J.; Nussbaum, R. D., Boundary layer phenomena for differential-delay equations with state-dependent time lags I, Arch. Ration. Mech. Anal., 120, 99-146 (1992) · Zbl 0763.34056
[14] Mallet-Paret, J.; Nussbaum, R. D., Boundary layer phenomena for differential-delay equations with state-dependent time lags II, J. Reine Angew. Math., 477, 129-197 (1996) · Zbl 0854.34072
[15] Mallet-Paret, J.; Nussbaum, R. D.; Paraskevopoulos, P., Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3, 1, 101-162 (1994) · Zbl 0808.34080
[16] Arino, O.; Sanchez, E., A saddle point theorem for functional state-dependent delay differential equations, Discrete Contin. Dyn. Syst., 12, 687-722 (2005) · Zbl 1085.34063
[17] Hartung, F.; Krisztin, T.; Walther, H.-O.; Wu, J., Functional differential equations with state-dependent delays: theory and applications, (Canada, A.; Drabek, P.; Fonda, A., Handbook of Differential Equations: Ordinary Differential Equations, Vol. 3 (2006), Elsevier B.V.) · Zbl 1107.34002
[18] Hadamard, J., Sur les problèmes aux derivees partielles et leur signification physique, Bull. Univ. Princeton, 13 (1902)
[19] Hadamard, J., Le Problème de Cauchy et Les èquations aux Derivees Partielles Linéaires Hyperboliques (1932), Hermann: Hermann Paris · Zbl 0006.20501
[20] Winston, E., Uniqueness of the zero solution for differential equations with state-dependence, J. Differ. Equ., 7, 395-405 (1970) · Zbl 0188.15603
[21] Rezounenko, A. V.; Wu, J., A non-local PDE model for population dynamics with state-selective delay: local theory and global attractors, J. Comput. Appl. Math., 190, 1-2, 99-113 (2006) · Zbl 1082.92039
[22] Rezounenko, A. V., Partial differential equations with discrete and distributed state-dependent delays, J. Math. Anal. Appl., 326, 2, 1031-1045 (2007), See also detailed preprint, March 22, 2005, http://arxiv.org/pdf/math.DS/0503470 · Zbl 1178.35370
[23] Rezounenko, A. V., On a class of P.D.E.s with nonlinear distributed in space and time state-dependent delay terms, Mathematical Methods in the Applied Sciences, 31, 13, 1569-1585 (2008) · Zbl 1148.35095
[24] Hernandez, E.; Prokopczyk, A.; Ladeira, L., A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. Real World Appl., 7, 4, 510-519 (2006) · Zbl 1109.34060
[25] Rezounenko, A. V., Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Anal. Ser. A: Theory, Methods Appl., 70, 11, 3978-3986 (2009) · Zbl 1163.35494
[26] A.V. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space, preprint, http://arxiv.org/pdf/0904.2308v1.; A.V. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space, preprint, http://arxiv.org/pdf/0904.2308v1.
[27] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[28] Chueshov, I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems (1999), Acta: Acta Kharkov, (in Russian). English transl. Acta, Kharkov (2002) (see http://www.emis.de/monographs/Chueshov) · Zbl 0948.34035
[29] Babin, A. V.; Vishik, M. I., Attractors of Evolutionary Equations (1992), North-Holland: North-Holland Amsterdam · Zbl 0778.58002
[30] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics (1988), Springer: Springer Berlin, Heidelberg, New York · Zbl 0662.35001
[31] Yosida, K., Functional Analysis (1965), Springer-Verlag: Springer-Verlag New York · Zbl 0126.11504
[32] Debussche, A.; Temam, R., Some new generalizations of inertial manifolds, Discr. Contin. Dynamical Systems, 2, 543-558 (1996) · Zbl 0948.35018
[33] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl., 146, 65-96 (1987) · Zbl 0629.46031
[34] So, J. W.-H.; Yang, Y., Dirichlet problem for the diffusive Nicholson’s blowflies equation, J. Differ. Equ., 150, 2, 317-348 (1998) · Zbl 0923.35195
[35] So, J. W.-H.; Wu, J.; Yang, Y., Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson’s blowflies equation, Appl. Math. Comput., 111, 1, 33-51 (2000) · Zbl 1028.65138
[36] So, J. W.-H.; Wu, J.; Zou, X., A reaction diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, Proc. Roy. Soc. London A, 457, 1841-1853 (2001) · Zbl 0999.92029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.