×

Geometrical disorder of the fronts of a tunnel-crack propagating in shear in some heterogeneous medium. (English) Zbl 1193.74126

Summary: A statistical analysis of the deformation of the fronts of a tensile tunnel-crack propagating in fatigue in some medium with spatially varying Paris constant was recently performed, with special emphasis on the evolution of the power spectra and correlation functions of the fluctuations of the fronts around reference straight lines. This study is extended here to coplanar propagation (along a weak plane) of a tunnel-crack loaded in mode \(2+3\). The results are rather similar to those previously obtained for mode 1. In particular, just like for tensile loadings, there is an effect of gradual selection in time of Fourier components of the fluctuations of the fronts of large wavelength. One novelty, however, is that for shear loadings, the fronts no longer tend to become symmetrical in time, so that correlations between crack front fluctuations at two points are higher for points located on the same front than for points located on distinct ones.

MSC:

74R10 Brittle fracture
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Ben-Zion, Y.; Morrissey, J., A simple re-derivation of logarithmic disordering of a dynamic planar crack due to small random heterogeneities, J. Mech. Phys. Solids, 43, 1363-1368 (1995) · Zbl 0919.73256
[2] Bonamy, D.; Santucci, S.; Ponson, L., Cracking dynamics in material failure as the signature of a self-organized dynamic phase transition, Phys. Rev. Lett., 101, 045501 (2008)
[3] Bower, A. F.; Ortiz, M., Solution of three-dimensional crack problems by a finite perturbation method, J. Mech. Phys. Solids, 38, 443-480 (1990) · Zbl 0716.73071
[4] Bower, A. F.; Ortiz, M., An analysis of crack trapping by residual stresses in brittle solids, ASME J. Appl. Mech., 60, 175-182 (1993) · Zbl 0797.73039
[5] Bueckner, H. F., Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space, Int. J. Solids Struct., 23, 57-93 (1987) · Zbl 0601.73102
[6] Charles, Y.; Vandembroucq, D.; Hild, F.; Roux, S., Material-independent crack arrest statistics, J. Mech. Phys. Solids, 52, 1651-1669 (2004) · Zbl 1065.74059
[7] Delaplace, A.; Schmittbuhl, J.; Maloy, K. J., High resolution description of a crack front in a heterogeneous plexiglas block, Phys. Rev. E, 60, 1337-1343 (1999)
[8] Favier, E.; Lazarus, V.; Leblond, J. B., Statistics of the deformation of the front of a tunnel-crack propagating in some inhomogeneous medium, J. Mech. Phys. Solids, 54, 1449-1478 (2006) · Zbl 1120.74750
[9] Favier, E.; Lazarus, V.; Leblond, J. B., Coplanar propagation paths of 3D cracks in infinite bodies loaded in shear, Int. J. Solids Struct., 43, 2091-2109 (2006) · Zbl 1121.74449
[10] Fleck, N. A.; Kang, K. J.; Ashby, M. F., Overview no. 112: the cyclic properties of engineering materials, Acta Metall. Mater., 42, 365-381 (1994)
[11] Gao, H., Nearly circular shear mode cracks, Int. J. Solids Struct., 24, 177-193 (1988) · Zbl 0629.73086
[12] Gao, H.; Rice, J. R., Shear stress intensity factors for planar crack with slightly curved front, ASME J. Appl. Mech., 53, 774-778 (1986) · Zbl 0606.73112
[13] Gao, H.; Rice, J. R., Somewhat circular tensile cracks, Int. J. Fracture, 33, 155-174 (1987)
[14] Gao, H.; Rice, J. R., Nearly circular connections of elastic half-spaces, ASME J. Appl. Mech., 54, 627-634 (1987) · Zbl 0634.73101
[15] Gao, H.; Rice, J. R., A first-order perturbation analysis of crack trapping by arrays of obstacles, ASME J. Appl. Mech., 56, 828-836 (1989) · Zbl 0729.73264
[16] Katzav, E.; Adda-Bedia, M., Roughness of tensile crack fronts in heterogenous materials, Europhys. Lett., 76, 450-456 (2006)
[17] Lazarus, V., Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading, Int. J. Fracture, 122, 23-46 (2003)
[18] Lazarus, V.; Leblond, J. B., Three-dimensional crack-face weight functions for the semi-infinite interface crack. I. Variation of the stress intensity factors due to some small perturbation of the crack front, J. Mech. Phys. Solids, 46, 489-511 (1998) · Zbl 0977.74571
[19] Lazarus, V.; Leblond, J. B., Three-dimensional crack-face weight functions for the semi-infinite interface crack. II. Integro-differential equations on the weight functions and resolution, J. Mech. Phys. Solids, 46, 513-536 (1998) · Zbl 0977.74570
[20] Lazarus, V.; Leblond, J. B., In-plane perturbation of the tunnel-crack under shear loading. I: Bifurcation and stability of the straight configuration of the front, Int. J. Solids Struct., 39, 4421-4436 (2002) · Zbl 1049.74758
[21] Lazarus, V.; Leblond, J. B., In-plane perturbation of the tunnel-crack under shear loading. II: Determination of the fundamental kernel, Int. J. Solids Struct., 39, 4437-4455 (2002) · Zbl 1049.74759
[22] Lazarus, V.; Leblond, J. B., Crack front stability for a tunnel-crack propagating along its plane in mode 2+3, C. R. Acad. Sci. Paris Sér. II, 330, 437-443 (2002) · Zbl 1058.74558
[23] Leblond, J. B.; Mouchrif, S. E.; Perrin, G., The tensile tunnel-crack with a slightly wavy front, Int. J. Solids Struct., 33, 1995-2022 (1996) · Zbl 0929.74086
[24] Morrissey, J.; Rice, J., Crack front waves, J. Mech. Phys. Solids, 46, 467-487 (1998) · Zbl 0974.74556
[25] Morrissey, J.; Rice, J., Perturbative simulations of crack front waves, J. Mech. Phys. Solids, 48, 1229-1251 (2000) · Zbl 0984.74072
[26] Perrin, G.; Rice, J. R., Disordering of a dynamic planar crack front in a model elastic medium of randomly variable toughness, J. Mech. Phys. Solids, 42, 1047-1064 (1994) · Zbl 0814.73046
[27] Piccolroaz, A.; Mishuris, G.; Movchan, A. B., Evaluation of the Lazarus-Leblond constants in the asymptotic model of the interfacial wavy crack, J. Mech. Phys. Solids, 55, 1575-1600 (2007) · Zbl 1176.74161
[28] Pindra, N.; Lazarus, V.; Leblond, J. B., The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties, J. Mech. Phys. Solids, 56, 1269-1295 (2008) · Zbl 1171.74418
[29] Ramanathan, S.; Ertas, D.; Fisher, D. S., Quasistatic crack propagation in heterogeneous media, Phys. Rev. Lett., 79, 873-876 (1997)
[30] Ramanathan, S.; Fisher, D. S., Dynamics and instabilities of planar tensile cracks in heterogeneous media, Phys. Rev. Lett., 79, 877-880 (1997)
[31] Rice, J. R., First-order variation in elastic fields due to variation in location of a planar crack front, ASME J. Appl. Mech., 52, 571-579 (1985) · Zbl 0571.73104
[32] Rice, J. R., Weight function theory for three-dimensional elastic crack analysis, (Wei, R. P.; Gangloff, R. P., Fracture Mechanics: Perspectives and Directions (Twentieth Symposium) (1989), American Society for Testing and Materials STP 1020: American Society for Testing and Materials STP 1020 Philadelphia, USA), 29-57
[33] Roux, S.; Vandembroucq, D.; Hild, F., Effective toughness of heterogeneous brittle materials, Eur. J. Mech. A/Solids, 22, 743-749 (2003) · Zbl 1032.74639
[34] Schmittbuhl, J.; Roux, S.; Vilotte, J. P.; Maloy, K. J., Interfacial crack pinning: effect of nonlocal interactions, Phys. Rev. Lett., 74, 1787-1790 (1995)
[35] Schmittbuhl, J.; Vilotte, J. P., Interfacial crack front wandering: influence of quenched noise correlations, Physica A, 270, 42-56 (1999)
[36] Willis, J. R.; Movchan, A. B., Dynamic weight functions for a moving crack. I. Mode I loading, J. Mech. Phys. Solids, 43, 319-341 (1995) · Zbl 0870.73057
[37] Woolfries, S.; Willis, J. R., Perturbation of a dynamic planar crack moving in a model elastic solid, J. Mech. Phys. Solids, 47, 1633-1661 (1999) · Zbl 0962.74052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.