×

Thin accretion disc with a corona in a central magnetic field. (English) Zbl 1192.85006

Summary: We study the steady-state structure of an accretion disc with a corona surrounding a central, rotating, magnetized star. We assume that the magneto-rotational instability is the dominant mechanism of angular momentum transport inside the disc and is responsible for producing magnetic tubes above the disc. In our model, a fraction of the dissipated energy inside the disc is transported to the corona via these magnetic tubes. This energy exchange from the disc to the corona which depends on the disc physical properties is modified because of the magnetic interaction between the stellar magnetic field and the accretion disc. According to our fully analytical solutions for such a system, the existence of a corona not only increases the surface density but reduces the temperature of the accretion disc. Also, the presence of a corona enhances the ratio of gas pressure to the total pressure. Our solutions show that when the strength of the magnetic field of the central neutron star is large or the star is rotating fast enough, profiles of the physical variables of the disc significantly modify due to the existence of a corona.

MSC:

85A15 Galactic and stellar structure
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics

References:

[1] Aly, J.J.: Astron. Astrophys. 86, 192 (1980)
[2] Aly, J.J., Kuijpers, J.: Astron. Astrophys. 227, 473 (1990)
[3] Armitage, P.J., Clarke, C.J., Tout, C.A.: Mon. Not. R. Astron. Soc. 304, 425 (1999) · doi:10.1046/j.1365-8711.1999.02320.x
[4] Balbus, S.A., Hawley, J.F.: Astrophys. J. 376, 214 (1991) · doi:10.1086/170270
[5] Begelman, M.C., McKee, C.F., Shields, G.A.: Astrophys. J. 271, 89 (1983) · doi:10.1086/161179
[6] Burm, H.: Astron. Astrophys. 165, 120 (1986)
[7] Burm, H., Kuperus, M.: Astron. Astrophys. 192, 165 (1988)
[8] Campbell, C.G., Heptinstall, P.M.: Mon. Not. R. Astron. Soc. 301, 558 (1998) · doi:10.1046/j.1365-8711.1998.02044.x
[9] Church, M.J., Balucinska-Church, M.: Astron. Astrophys. 300, 441 (1995)
[10] Church, M.J., Balucinska-Church, M.: Mon. Not. R. Astron. Soc. 348, 955 (2004) · doi:10.1111/j.1365-2966.2004.07162.x
[11] Dai, H.-L., Li, X.-D.: Astron. Astrophys. 451, 581 (2006) · Zbl 1096.85013 · doi:10.1051/0004-6361:20053907
[12] Dewey, R.J., Maguire, C.M., Rawley, L.A., Stokes, G.H., Taylor, J.H.: Nature 322, 712 (1986) · doi:10.1038/322712a0
[13] Frank, J., King, A., Raine, D.: Accretion Power in Astrophysics. Cambridge University Press, Cambridge (2002)
[14] Ghosh, P., Lamp, F.K.: Astrophys. J. 223, L83 (1978) · doi:10.1086/182734
[15] Galeev, A.A., Rosner, R., Vaiana, G.S.: Astrophys. J. 229, 318 (1979) · doi:10.1086/156957
[16] Haardt, F., Maraschi, L.: Astrophys. J. 413, 507 (1993) · doi:10.1086/173020
[17] Heyvaerts, J.F., Priest, E.R.: Astron. Astrophys. 137, 63 (1984)
[18] Heyvaerts, J.F., Priest, E.R.: Astron. Astrophys. 216, 230 (1989)
[19] Jimenez-Garate, M.A., Raymond, J.C., Liedahi, D.A.: Astrophys. J. 581, 1297 (2002) · doi:10.1086/344364
[20] Livio, M., Pringle, J.E.: Mon. Not. R. Astron. Soc. 259, 23 (1992)
[21] Matthews, O.M., Speith, R., Truss, M.R., Wynn, G.A.: Mon. Not. R. Astron. Soc. 356, 66 (2005) · doi:10.1111/j.1365-2966.2004.08430.x
[22] Merloni, A.: Mon. Not. R. Astron. Soc. 341, 1051 (2003) · doi:10.1046/j.1365-8711.2003.06496.x
[23] Merloni, A., Fabian, A.C.: Mon. Not. R. Astron. Soc. 328, 958 (2001a) · doi:10.1046/j.1365-8711.2001.04925.x
[24] Merloni, A., Fabian, A.C.: Mon. Not. R. Astron. Soc. 321, 549 (2001b) · doi:10.1046/j.1365-8711.2001.04060.x
[25] Merloni, A., Nayakshin, S.: Mon. Not. R. Astron. Soc. 372, 728 (2006) · doi:10.1111/j.1365-2966.2006.10889.x
[26] Miller, K.A., Stone, J.M.: Astrophys. J. 489, 890 (1997) · doi:10.1086/304825
[27] Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Chechetkin, V.M., Lovelace, R.V.E.: Astrophys. J. 500, 703 (1998) · doi:10.1086/305760
[28] Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E.: Astrophys. J. 578, 420 (2002) · doi:10.1086/342464
[29] Romanova, M.M., Toropina, O.D., Toropina, Y.M., Lovelace, R.V.E.: Astrophys. J. 588, 400 (2003) · doi:10.1086/373990
[30] Rozanska, A., Czerny, B.: Acta Astron. 46, 233 (1996)
[31] Rozanska, A., Czerny, B., Zycki, P.T., Pojmanski, G.: Mon. Not. R. Astron. Soc. 305, 481 (1999) · doi:10.1046/j.1365-8711.1999.02425.x
[32] Rozanska, A., Dumont, A.M., Czerny, B., Collin, S.: Mon. Not. R. Astron. Soc. 332, 799 (2002) · doi:10.1046/j.1365-8711.2002.05338.x
[33] Schenker, K., King, A.R., Kolb, U., Wynn, G.A., Zhang, Z.: Mon. Not. R. Astron. Soc. 337, 110 (2002) · doi:10.1046/j.1365-8711.2002.05999.x
[34] Shakura, N., Sunyaev, R.A.: Astron. Astrophys. 24, 337 (1973)
[35] Shibata, K., Tajima, T., Matsumoto, R.: Astrophys. J. 350, 295 (1990) · doi:10.1086/168382
[36] Stella, L., Rosner, R.: Astrophys. J. 277, 312 (1984) · doi:10.1086/161697
[37] Stollman, G.M., Kuperus, M.: Astron. Astrophys. 203, 104 (1988)
[38] Taam, R.E., Lin, D.N.C.: Astrophys. J. 287, 761 (1984) · doi:10.1086/162734
[39] Verbunt, F.: Annu. Rev. Astron. Astrophys. 31, 93 (1993) · doi:10.1146/annurev.aa.31.090193.000521
[40] Van den Heuvel, E.P.J., van Paradijs, J., Taam, R.E.: Nature 322, 153 (1986) · doi:10.1038/322153a0
[41] Wang, Y.M.: Astron. Astrophys. 183, 257 (1987)
[42] Warner, B.: Cataclysmic Variable Stars. Cambridge University Press, Cambridge (1995)
[43] Watarai, K.-Y., Mineshige, S.: Astrophys. J. 596, 421 (2003) · doi:10.1086/377576
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.