×

Singular parabolic equations with measures as initial data. (English) Zbl 1191.35158

This paper studies solving the Cauchy problem for singular \(p\)-Laplacian evolution equations. Specifically, for \(\mu\) a non-negative Radon measure, \( \frac{2N}{N+1}<p<2\), consider the following problem:
\[ \begin{aligned} u_t-\text{div}(|Du|^{p-2}Du)= \lambda |Du|^l+ \lambda_0u^q &\quad\text{in }\mathbb R^N\times(0,T),\\ u(x,0)=\mu &\quad\text{on }\mathbb R^N, \end{aligned} \]
with \(0<l<p,\) \(q\geq 1\) and \(\lambda,\lambda_0\geq 0\). The main theorem the authors obtain is that, if
\[ [\mu]:= \sup_{x\in\mathbb R^N}\;\sup_{0<\rho <1} \left(\rho^\theta\frac{1}{|B_\rho(x)|}\int_{B_\rho(x)}\,d\mu \right) <\infty , \]
with \(0\leq \theta \leq N\), \(\theta(l-p+1)<(p-l)\) and \(\theta(q-1)<p+\theta(p-2)\), then there exists a solution to the above initial value problem such that, for \(0<t<T_0\),
\[ [u]_t:= \sup_{0<\tau<t}\;\sup_{x\in\mathbb R^N}\;\sup_{0<\rho<1} \left(\frac{\rho^\theta}{|B_\rho(x)|}\int_{B_\rho(x)}u(y,\tau) \,dy\right)\leq \gamma \left([\mu]^{\frac{\rho}{\kappa}}+1\right) \]
and
\[ \|u(\cdot ,t)\|_{\infty,\mathbb R^N}\leq \gamma t^{-(\frac{\theta}{p+\theta (p-2)})} \left([\mu]^{\frac{\rho}{\kappa}}+1\right), \]
with \(T_0= T_0([\mu] ,N,p,q,\lambda, l,\theta,\lambda_0)\), \(\gamma=\gamma (N,p,q,\lambda ,l,\theta,\lambda_0)\) and \(\kappa =(p+N(p-2))\). The authors first establish a number of a priori estimates and then use these with an approximation method to prove the theorem. They conclude the paper by proving a second theorem for the supercritical case \(q>p-1+p/N\). The second theorem says for \(u\) a non-negative weak solution, for \(1<p<2\), and \(q>(1+\varepsilon)(p-1)+p/N\), there exist constants \(\rho_0\), \(0<\rho_0<1\), and \(\gamma \) so that
\[ \rho^{\frac{p}{q-(1+\varepsilon)(p-1)}} \left(\frac{1}{|B_\rho(x)|} \int_{B_\rho(x)} u(y,t)\,dy\right) \leq \gamma, \]
for all \(x\in\mathbb R^N\), \(0<t<T/2\), \(0<\varepsilon <p-1\) and \(0<\rho<\rho_0\).
They discuss in detail how their results relate to other recent results, and what extensions can be proved. Related work includes [D. Andreucci, Trans. Am. Math. Soc. 349, No. 10, 3911–3923 (1997; Zbl 0885.35056); D. Andreucci and E. Di Benedetto, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18, No. 3, 363–441 (1991; Zbl 0762.35052); J. Zhao and P. D. Lei, Acta Math. Sin., Engl. Ser. 17, No. 3, 455–470 (2001; Zbl 0983.35071)].

MSC:

35K67 Singular parabolic equations
35K15 Initial value problems for second-order parabolic equations
35K55 Nonlinear parabolic equations
35K91 Semilinear parabolic equations with Laplacian, bi-Laplacian or poly-Laplacian
Full Text: DOI

References:

[1] Alaa, N., Solutions faibles d’équations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise Pascal, 3, 2, 1-15 (1996) · Zbl 0882.35027
[2] Amann, H.; Quittner, P., Semilinear parabolic equations involving measures and lowregularity data, Trans. Amer. Math. Soc., 356, 3, 1045-1119 (2004) · Zbl 1072.35094
[3] Andreu, F.; Mazon, J. M.; Simondon, F.; Toledo, J., Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source, Math. Ann., 314, 703-728 (1999) · Zbl 0926.35068
[4] Andreucci, D., Degenerate parabolic equations with initial data measures, Trans. Amer. Math. Soc., 349, 10, 3911-3923 (1997) · Zbl 0885.35056
[5] Andreucci, D.; Di Benedetto, E., On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 18, 3, 393-441 (1991) · Zbl 0762.35052
[6] Aronson, D. G.; Caffarelli, L. A., The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc., 280, 1, 351-366 (1983) · Zbl 0556.76084
[7] Baras, P.; Pierre, M., Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal., 18, 1-2, 111-149 (1984) · Zbl 0582.35060
[8] Bidaut-Véron, M. F.; Chasseigne, E.; Véron, L., Initial trace of solutions of some quasilinear parabolic equations with absorption, J. Funct. Anal., 193, 140-205 (2002) · Zbl 1010.35052
[9] Chen, Yazhe; Di Benedetto, E., Hölder estimates of solutions of singular parabolic equations with measurable coefficients, Arch. Ration. Mech. Anal., 118, 257-271 (1992) · Zbl 0836.35029
[10] Di Benedetto, E., Degenerate Parabolic Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0794.35090
[11] Di Benedetto, E.; Herrero, M. A., On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 134, 187-224 (1989) · Zbl 0691.35047
[12] Di Benedetto, E.; Herrero, M. A., Nonnegative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when \(1 < p < 2\), Arch. Ration. Mech. Anal., 111, 3, 257-271 (1992)
[13] Gilding, B. H.; Guedda, M.; Kersner, R., The Cauchy problem for \(u_t = \triangle u + | \nabla u |^q\), J. Math. Anal. Appl., 284, 2, 733-755 (2003) · Zbl 1041.35026
[14] Ladyzhenskaja, O. A.; Solonikov, V. A.; Ural’cema, N. N., Linear and Quasilinear Equations of Parabolic Type (1968), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0174.15403
[15] Lian, Songzhe; Yuan, Hongjun; Cao, Chunling; Gao, Wenjie; Xu, Xiaojing, On the Cauchy problem for the evolution p-Laplacian equations with gradient term and source, J. Differential Equations, 235, 544-585 (2007) · Zbl 1128.35059
[16] Lions, J. L., Quelques Méthodes de Résolution des Problémes aux Limites Nonlinéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[17] Haifeng Shang, Fengquan Li, On the Cauchy problem for the evolution p-Laplacian equations with gradient term and source and measures as initial data, submitted for publication; Haifeng Shang, Fengquan Li, On the Cauchy problem for the evolution p-Laplacian equations with gradient term and source and measures as initial data, submitted for publication · Zbl 1184.35186
[18] Xu, Xiangsheng, On the Cauchy problem for a singular parabolic equation, Pacific J. Math., 174, 1, 277-294 (1996) · Zbl 0872.35058
[19] Zhao, Junning, On the Cauchy problem of evolution p-Laplacian equations with strongly nonlinear sources when \(1 < p < 2\), Acta Math. Sin. (Engl. Ser.), 17, 3, 455-470 (2001) · Zbl 0983.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.