×

Solution of Riemann-Hilbert problems for determination of new decoupled expressions of Chandrasekhar’s \(X\)- and \(Y\)-functions for slab geometry in radiative transfer. (English) Zbl 1186.85018

Summary: In radiative transfer, the intensities of radiation from the bounding faces of a scattering atmosphere of finite optical thickness can be expressed in terms of Chandrasekhar’s \(X\)- and \(Y\)-functions. The nonlinear nonhomogeneous coupled integral equations which the \(X\)- and \(Y\)-functions satisfy in the real plane are meromorphically extended to the complex plane to frame linear nonhomogeneous coupled singular integral equations. These singular integral equations are then transformed into nonhomogeneous Riemann-Hilbert problems using Plemelj’s formulae. Solutions of those Riemann-Hilbert problems are obtained using the theory of linear singular integral equations. New forms of linear nonhomogeneous decoupled expressions are derived for \(X\)- and \(Y\)-functions in the complex plane and real plane. Solutions of these two expressions are obtained in terms of one known \(N\)-function and two new unknown functions \(N_{1}\)- and \(N_{2}\)- in the complex plane for both nonconservative and conservative cases. The \(N_{1}\)- and \(N_{2}\)-functions are expressed in terms of the known \(N\)-function using the theory of contour integration. The unknown constants are derived from the solutions of Fredholm integral equations of the second kind uniquely using the new linear decoupled constraints. The expressions for the \(H\)-function for a semi-infinite atmosphere are obtained as a limiting case.

MSC:

85A25 Radiative transfer in astronomy and astrophysics
45E05 Integral equations with kernels of Cauchy type
Full Text: DOI

References:

[1] Adams, C.N., Kattawar, G.W.: J. Quant. Spectrosc. Radiat. Transfer 10(5), 341–356 (1970) · doi:10.1016/0022-4073(70)90101-9
[2] Bellman, R., Kagiwada, H., Kalaba, R.: Numerical results for Chandrasekhar’s X and Y functions of radiative transfer. J. Quant. Spectrosc. Radiat. Transfer 6(4), 479–500 (1966) · doi:10.1016/0022-4073(66)90012-4
[3] Bellman, R., Poon, P.T.Y., Ueno, S.: Numerical results for finite order X and Y functions of radiative transfer. J. Quant. Spectrosc. Radiat. Transfer 13(12), 1273–1284 (1973) · doi:10.1016/0022-4073(73)90040-X
[4] Biswas, G., Karanjai, S.: Time dependent H-, X- and Y- functions for an anisotropically scattering atmosphere. Astrophys. Space Sci. 164, 15–36 (1990) · doi:10.1007/BF00653547
[5] Brandt, J.C., Chamberlain, J.W.: J. Atmos. Terr. Phys. 13, 90 (1958) · doi:10.1016/0021-9169(58)90028-X
[6] Busbridge, I.W.: Astronom. J. 122, 327–348 (1955)
[7] Busbridge, I.W.: The Mathematics of Radiative Transfer. Cambridge Tracts, vol. 50. Cambridge University Press, Cambridge (1960) · Zbl 0090.21405
[8] Caldwell, J.: The X- and Y-functions of Chandrasekhar. Astrophys. J. 163, 111, 120 (1971) · doi:10.1086/150749
[9] Carlstedt, J.L., Mullikin, T.W.: Chandrasekhar’s X- and Y- functions. Astrophys. J. 12, N113 (1966)
[10] Case, K.M.: Elementary solutions of the transport equation and their applications. Ann. Phys. 9, 1–23 (1960) · Zbl 0087.42301 · doi:10.1016/0003-4916(60)90060-9
[11] Chandrasekhar, S.: Radiative Transfer. Dover, New York (1950) · Zbl 0037.43201
[12] Chandrasekhar, S., Elbert, D.: Astrophys. J. 115, 269 (1952) · doi:10.1086/145537
[13] Das, R.N.: Exact solution of the equation for the problem of diffuse reflection and transmission with a scattering function w 0(1+xcosO) by the method of Laplace transform and theory of linear singular integral equation. Astrophys. Space Sci. 58, 409–417 (1978a) · Zbl 0396.45007 · doi:10.1007/BF00644527
[14] Das, R.N.: Exact solution of the problem of diffuse reflection and transmission by the method of Laplace transform and linear singular operators. Astrophys. Space Sci. 58, 419–425 (1978b) · Zbl 0403.45013 · doi:10.1007/BF00644528
[15] Das, R.N.: Exact solution of the problem of diffuse reflection and transmission in Rayleigh scattering by use of Laplace transform and the theory of linear singular operators. Astrophys. Space Sci. 60, 221–232 (1979a) · Zbl 0393.45005 · doi:10.1007/BF00648254
[16] Das, R.N.: Application of the Wiener-Hopf technique for a new representation of X- and Y- equations. Astrophys. Space Sci. 61, 169–173 (1979b) · Zbl 0393.45006 · doi:10.1007/BF00645800
[17] Das, R.N.: Exact solution of a key equation in a finite stellar atmosphere by the method of Laplace transform and linear singular operators. Astrophys. Space Sci. 67, 335–342 (1980a) · Zbl 0424.70016 · doi:10.1007/BF00642387
[18] Das, R.N.: Exact solution of a basic equation in finite atmosphere by the method of Laplace transform and linear singular operators. Astrophys. Space Sci. 71, 25–35 (1980b) · Zbl 0435.45011 · doi:10.1007/BF00646904
[19] Das, R.N.: A new method for exact solution of transfer equations in finite media. Astrophys. Space Sci. 76, 441–463 (1981) · Zbl 0464.76056 · doi:10.1007/BF00687505
[20] Das, R.N.: Determination of intensity of radiation from the bounding faces of a finite plane-parallel scattering atmosphere by a method of Laplace transform and theory of linear singular operator. Ind. J. Phys. 58A, 401–410 (1984)
[21] Das, R.N.: Application of Wiener-Hopf technique to linear non homogeneous integral equations for a new representation of Chandrasekhar’s H- function in radiative transfer, its existence and uniqueness. J. Math. Anal. Appl. 337, 1366–1382 (2008a). doi: 10.1016/j.jmaa2007.04.040 Published online w.e.f 27/4/2007, arXiv: Astro-Ph/0701460 · Zbl 1141.45003 · doi:10.1016/j.jmaa.2007.04.040
[22] Das, R.N.: Solution of a Riemann–Hilbert problem for a new expression of Chandrasekhar’s H- function in radiative transfer. J. Astrophys. Space Sci. 317, 119–126 (2008b). doi: 10.1007/s10509-008-9864-x arXiv:Astro-Ph/0701457 · Zbl 1161.85309 · doi:10.1007/s10509-008-9864-x
[23] Dasgupta, S.R.: Exact and unique solution of transport equation. Astrophys. Space Sci. 56, 21–49 (1978) · Zbl 0406.45013 · doi:10.1007/BF00643460
[24] Dasgupta, S.R., Bishnu, S.K.: Exact solution of transport equation in finite multiplying media. Astrophys. Space Sci. 74, 131–147 (1981) · Zbl 0453.76105 · doi:10.1007/BF00642087
[25] Domke, H.: Linear singular integral equations for polarized radiation in isotropic media. Astron. Nachr. B d298, H1 (1977)
[26] Ekh, D.: On theory of isotropic scattering of radiation in a plane layer–The method of separated linear integral equations. Astrophysics 36, 140–150 (1993)
[27] Ekh, D.: Theory of isotropic scattering of radiation in a plane layer–Feasibility of obtaining a complete analytic solution of the problem. Astrophysics 37, 29–45 (1994)
[28] Fymat, A.L., Abhyankar, K.D.: An alternative form of Ueno’s X- and Y-function for inhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer 10(1), 49–54 (1970) · doi:10.1016/0022-4073(70)90129-9
[29] Haggag, H., Machali, H., Madkour, M.: X-Y functions of Chandrasekhar. J. Quant. Spectrosc. Radiat. Transfer 41(6), 461–466 (1989) · doi:10.1016/0022-4073(89)90116-7
[30] Ivanov, V.V.: Transfer of radiation in spectral lines. US Department of Commerce: National Bureau of Standards, Special Publication 385 (1973)
[31] Lahoz, W.A.: An exact linearization and decoupling of the integral equations satisfied by Chandrasekhar’s X- and Y- functions. J. Quant. Spectrosc. Radiat. Transfer 42(6), 563–565 (1989) · doi:10.1016/0022-4073(89)90047-2
[32] Lahoz, W.A.: An exact solution of Chandrasekhar’s X- and Y- functions. J. Quant. Spectrosc. Radiat. Transfer 44(2), 217–223 (1990) · doi:10.1016/0022-4073(90)90027-4
[33] Mayers, D.F.: Mon. Not. R. Astron. Soc. 123, 471 (1962)
[34] Mueller, D.W., Crosbie, A.L.: Three dimensional radiative transfer in isotropically scattering plane parallel medium, generalised X- and Y- functions. J. Quant. Spectrosc. Radiat. Transfer 92, 467 (2005)
[35] Mullikin, T.W.: A complete solution of the X and Y equations of Chandrasekhar. Astrophys. J. 136, 627–635 (1962) · Zbl 0103.23106 · doi:10.1086/147413
[36] Mullikin, T.W.: Chandrasekhar’s X and Y equations (1). Trans. Am. Math. Soc. 113, 316–332 (1964) · Zbl 0124.05903
[37] Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953) · Zbl 0051.33203
[38] Roy Mondal, R.C., Biswas, G., Karanjai, S.: Derivation of frequency dependent X- and Y- functions for a non-coherent scattering problem. Astrophys. Space Sci. 164, 139–151 (1990) · doi:10.1007/BF00653559
[39] Rutily, B., Chevallier, L., Bergeat, J.: Radiative transfer in plane parallel media and Cauchy integral equations III–The finite case. J. Transp. Theory Stat. Phys. (2003a, submitted) arXiv: Astro-ph/0601351 · Zbl 1021.45002
[40] Rutily, B., Chevallier, L., Bergeat, J.: Integral equations satisfied by the H-, X- and Y- functions and the albedo problems. J. Quant. Spectrosc. Radiat. Transfer 66, 133C (2004)
[41] Rutily, B., Chevallier, L., Bergeat, J.: Integral equations for the H-, X- and Y- functions. J. Astrophys. 1342 R (2006)
[42] Rybicki, G.B.: The search light problem with isotropic scattering. J. Quant. Spectrosc. Radiat. Transfer 11(6), 827–849 (1971) · doi:10.1016/0022-4073(71)90059-8
[43] Sobouti, Y.: Astrophys. J. Suppl. 7, 411 (1962) · doi:10.1086/190082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.