×

Hamiltonian and super-Hamiltonian extensions related to Broer-Kaup-Kupershmidt system. (English) Zbl 1185.81096

Summary: Based on the Lie algebra \(A_1\), the integrable Broer-Kaup-Kupershmidt (BKK) system is revisited. The bi-Hamiltonian structure is constructed by the trace identity. Two extensions of the Lie algebra \(A_1\) are considered, i.e., the non-semi-simple Lie algebra of \(4\times 4\) matrix and the super-Lie algebra of \(3\times 3\) matrix, from which two hierarchies of soliton equations related to BKK system are given. With the aid of the generalized trace identity and the super-trace identity, the Hamiltonian and super-Hamiltonian structures of the resulting systems are constructed.

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
17B80 Applications of Lie algebras and superalgebras to integrable systems
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI

References:

[1] Fordy, A.P., Kulish, P.P.: Nonlinear Schrödinger equations and simple Lie algebras. Commun. Math. Phys. 89, 427–443 (1983) · Zbl 0563.35062 · doi:10.1007/BF01214664
[2] Kupershmidt, B.A.: Lie algebras and Korteweg-de Vries equations. Physica D 27, 294–310 (1987) · Zbl 0643.35102 · doi:10.1016/0167-2789(87)90033-9
[3] Tu, G.Z.: The trace identity, a powerful tool for Constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 30, 330–338 (1989) · Zbl 0678.70015 · doi:10.1063/1.528449
[4] Chen, D.Y.: Soliton Introduction. Science Press, Beijing (2006)
[5] Hu, X.B.: A powerful approach to generate new integrable systems. J. Phys. A, Math. Gen. 27, 2497–2514 (1994) · Zbl 0838.58018 · doi:10.1088/0305-4470/27/7/026
[6] Ma, W.X.: A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. Ann. Math. 13(A), 115–123 (1992) (in Chinese) · Zbl 0765.58011
[7] Xu, X.X.: A generalized Wadati-Konno-Ichikawa hierarchy and new finite-dimensional integrable systems. Phys. Lett. A 301, 250–262 (2002) · Zbl 0997.37047 · doi:10.1016/S0375-9601(02)00957-X
[8] Ma, W.X., Chen, M.: Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A, Math. Gen. 39, 10787–10801 (2006) · Zbl 1104.70011 · doi:10.1088/0305-4470/39/34/013
[9] Ma, W.X.: Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Anal. 71(12), e1716–e1726
[10] Ma, W.X.: Multi-component bi-Hamiltonian Dirac integrable equations. Chaos Solitons Fractals 39, 282–287 (2009) · Zbl 1197.37079 · doi:10.1016/j.chaos.2007.01.097
[11] Hu, X.B.: An approach to generate superextensions of integrable systems. J. Phys. A, Math. Gen. 30, 619–632 (1997) · Zbl 0947.37039 · doi:10.1088/0305-4470/30/2/023
[12] Ma, W.X.: A supertrace identity and its applications to super-integrable systems. J. Math. Phys. 49, 033511 (2008) · Zbl 1153.81398 · doi:10.1063/1.2897036
[13] Kupershmidt, B.A.: Mathematics of dispersive water waves. Commun. Math. Phys. 99, 51–73 (1985) · Zbl 1093.37511 · doi:10.1007/BF01466593
[14] Kaup, D.J.: A higher-order water wave equation and method for solving it. Prog. Theor. Phys. 54(2), 396–408 (1975) · Zbl 1079.37514 · doi:10.1143/PTP.54.396
[15] Satsuma, J., Kajiwara, K., Matsukidaira, J., Hietarinta, J.: Solution to the Broer-Kaup system through its trilinear form. J. Phys. Soc. Jpn. 61, 3096–3102 (1992) · Zbl 0941.37547 · doi:10.1143/JPSJ.61.3096
[16] Zhang, J.S.: The explicit solution of the (2+1)-dimensional modified Broer-Kaup-Kupershmidt soliton equation. Phys. Lett. A 343, 359–371 (2005) · Zbl 1194.35394 · doi:10.1016/j.physleta.2005.05.061
[17] Ma, W.X., Fuchssteiner, B.: Integrable theory of the perturbation equations. Chaos Soliton Fractals. 7, 1227–1250 (1996) · Zbl 1080.37578 · doi:10.1016/0960-0779(95)00104-2
[18] Ma, W.X.: Enlarging spectral problems to construct integrable couplings of soliton equations. Phys. Lett. A 316, 72–76 (2003) · Zbl 1042.37057 · doi:10.1016/S0375-9601(03)01137-X
[19] Ma, W.X.: Integrable couplings of vector AKNS soliton equations. J. Math. Phys. 46, 033507 (2005) · Zbl 1067.37096 · doi:10.1063/1.1845971
[20] Ma, W.X., Xu, X.X., Zhang, Y.F.: Semi-direct sums of Lie algebras and continuous integrable couplings. Phys. Lett. A 351, 125–130 (2006) · Zbl 1234.37049 · doi:10.1016/j.physleta.2005.09.087
[21] Ma, W.X., Xu, X.X., Zhang, Y.F.: Semi-direct sums of Lie algebras and discrete integrable couplings. J. Math. Phys. 47, 053501 (2006) · Zbl 1111.37059 · doi:10.1063/1.2194630
[22] Xu, X.X., Yang, H.X., Cao, W.L.: A 4{\(\times\)}4 Matrix eigenvalue problem, related hierarchy of Lax integrable equations and their Hamiltonian structures. Int. J. Mod. Phys. Lett. B 22, 4027–4040 (2008) · Zbl 1200.37065 · doi:10.1142/S0217979208048735
[23] Zhang, Y.F., Fan, E.G.: An approach for generating enlarging integrable systems. Phys. Lett. A 365, 89–96 (2007) · Zbl 1203.37114 · doi:10.1016/j.physleta.2006.11.103
[24] Yang, H.X., Xu, X.X., Sun, Y.P., Ding, H.Y.: Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation. J. Phys. A, Math. Gen. 39, 3933–3947 (2006) · Zbl 1088.37044 · doi:10.1088/0305-4470/39/15/007
[25] Stanciu, S.: Supersymmetric integrable hierarchies and string theory. hep-th/9407189v1 (1994)
[26] Liu, Q.P.: Bi-Hamiltonian structure of a generalized super Korteweg-de Vries equation. J. Phys. A, Math. Gen. 26, L1239–L1242 (1993) · Zbl 0822.35119 · doi:10.1088/0305-4470/26/23/009
[27] Aratyn, H.: Supersymmetry for integrable hierarchies on loop superalgebras. arXiv: hep-th/0508008v1 (2005) · Zbl 1081.81049
[28] Fordy, A.P.: Quantum super-integrable systems as exactly solvable models, symmetry, integrability and geometry: methods and applications. SIGMA 3, 025–034 (2007) · Zbl 1136.81027
[29] Liu, Q.P., Hu, X.B., Zhang, M.X.: Supersymmetric modified Korteweg-de Vries equation: bilinear approach. Nonlinearity 18, 1597–1603 (2005) · Zbl 1181.35216 · doi:10.1088/0951-7715/18/4/009
[30] Liu, Q.P., Manas, M.X.: Darboux transformation for supersymmetric KP hierarchies. Phys. Lett. B 485, 293–300 (2000) · Zbl 0973.37047 · doi:10.1016/S0370-2693(00)00663-8
[31] Li, Y.S., Zhang, L.N.: Hamiltonian structure of the super evolution equation. J. Math. Phys. 31, 470–475 (1990) · Zbl 0705.58024 · doi:10.1063/1.528881
[32] Li H, Z., Dong, H., Yang, H.W.: A super-soliton hierarchy and its super-Hamiltonian structure. Int. J. Theor. Phys. 48(7), 2172–2176 (2009) · Zbl 1177.37073 · doi:10.1007/s10773-009-9995-z
[33] Sun, H.Z., Han, Q.Z.: Lie Algebras and Lie Superalgebras and their Applications in Physics. Peking University Press, Beijing (1999)
[34] Inami, T., Kanno, H.: Lie superalgebraic approach to super Toda lattice and generalized super KdV equations. Commun. Math. Phys. 136, 519–542 (1991) · Zbl 0738.35087 · doi:10.1007/BF02099072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.