×

Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. (English) Zbl 1182.35048

The first goal of this article is to prove the regularity of trajectory attractor and to reveal the trajectory smoothing effect for the following 2D incompressible non-Newtonian fluid:
\[ \frac{\partial{u}}{\partial{t}}+(u\cdot\nabla)u+\nabla{p}=\nabla\cdot\tau(e(u))+g(x),\;x=(x_{1},x_{2})\in{\mathbb{D}},\qquad \nabla\cdot{u}=0, \]
where \(\mathbb{D}\) is a smooth bounded domain of \(\mathbb{R}^{2}\), \(g(x)=(g^{(1)},g^{(2)})\) is the time-independent external force function, and \(\tau(e(u))=(\tau_{ij}(e(u)))_{2\times2}\), which is usually called the extra stress tensor of the fluid, is a matrix of order \(2\times2\) and
\[ \tau_{ij}(e(u))=2\mu_{0}(\varepsilon+|e|^{2})^{-\alpha/2}e_{ij}-2\mu_{1}\Delta{e}_{ij},\quad i,j=1,2, \]
\[ e_{ij}=e_{ij}(u)=\frac{1}{2}\left(\frac{\partial{u}_{i}}{\partial{x}_{j}}+\frac{\partial{u}_{j}}{\partial{x}_{i}}\right),\quad |e|^{2}=\sum_{i,j=1}^{2}|e_{ij}|^{2}, \]
and \(\mu_{0}\), \(\mu_{1}\), \(\alpha\), \(\varepsilon\) are parameters which generally depend on the temperature and pressure.
The second goal is the upper semicontinuity of global attractors of the addressed fluid when the spatial domains vary from \(\Omega_m\) to \(\Omega=\mathbb{R}\times(-L,L)\), where \(\{\Omega_m\}_{m=1}^\infty\) is an expanding sequence of simply connected, bounded and smooth subdomains of \(\Omega\) such that \(\Omega_m\rightarrow\Omega\) as \(m\rightarrow+\infty\).

MSC:

35B41 Attractors
35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[2] Ball, J. M., Continuity properties of global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7, 475-502 (1997) · Zbl 0903.58020
[3] Babin, A. V.; Vishik, M. I., Attractors of Evolution Equations (1992), North-Holland: North-Holland Amsterdam · Zbl 0778.58002
[4] Bae, Hyeong-Ohk, Existence, regularity, and decay rate of solutions of non-Newtonian flow, J. Math. Anal. Appl., 231, 467-491 (1999) · Zbl 0920.76007
[5] Bellout, H.; Bloom, F.; Nečas, J., Weak and measure-valued solutions for non-Newtonian fluids, C. R. Acad. Sci. Paris, 317, 795-800 (1993) · Zbl 0784.76005
[6] Bellout, H.; Bloom, F.; Nečas, J., Young measure-valued solutions for non-Newtonian incompressible viscous fluids, Comm. Partial Differential Equations, 19, 1763-1803 (1994) · Zbl 0840.35079
[7] Bloom, F.; Hao, W., Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions, Nonlinear Anal., 44, 281-309 (2001) · Zbl 0993.76004
[8] Bloom, F.; Hao, W., Regularization of a non-Newtonian system in an unbounded channel: Existence of a maximal compact attractor, Nonlinear Anal., 43, 743-766 (2001) · Zbl 0989.76003
[9] Caraballo, T.; Langa, J.; Valero, J., Global attractors for multivalued random semiflows generated by random differential inclusions with additive noise, C. R. Acad. Sci. Paris Sér. I, 331, 131-136 (2001) · Zbl 0978.37043
[10] Caraballo, T.; Langa, J.; Valero, J., Global attractors for multivalued random dynamical systems, Nonlinear Anal., 48, 805-829 (2002) · Zbl 1004.37035
[11] Caraballo, T.; Langa, J.; Valero, J., Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise, J. Math. Anal. Appl., 260, 602-622 (2001) · Zbl 0987.60074
[12] Caraballo, T.; Langa, J.; Melnik, V.; Valero, J., Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11, 153-201 (2003) · Zbl 1018.37048
[13] Caraballo, T.; Langa, J. A., On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Cont. Discrete Impuls. Syst., 10, 491-513 (2003) · Zbl 1035.37013
[14] Caraballo, T.; Rubio, P. M.; Robinson, J., A comparison between two theories for multivalued semiflows and their asymptotic behaviour, Set-Valued Anal., 11, 297-322 (2003) · Zbl 1053.47050
[15] Caraballo, T.; Kloeden, P. E.; Rubio, P. M., Weak pullback attractors of setvalued processes, J. Math. Anal. Appl., 288, 692-707 (2003) · Zbl 1044.93035
[16] Chepyzhov, V. V.; Vishik, M. V., Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76, 913-964 (1997) · Zbl 0896.35032
[17] Chepyzhov, V. V.; Vishik, M. I., Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., vol. 49 (2002), AMS: AMS Providence, RI · Zbl 0986.35001
[18] Dong, B.; Li, Y., Large time behavior to the system of incompressible non-Newtonian fluids in \(R^2\), J. Math. Anal. Appl., 298, 667-676 (2004) · Zbl 1059.35104
[19] Dong, B.; Chen, Z., Time decay rates of non-Newtonian flows in \(R_+^2\), J. Math. Anal. Appl., 324 (2006) · Zbl 1102.76014
[20] Elliott, C. M.; Kostin, I. N., Lower semicontinuity of a nonhyperbolic attractor for the viscous Cahn-Hilliard equation, Nonlinearity, 9, 687-702 (1996) · Zbl 0888.35047
[21] Goubet, O., Regularity of the attractor for Schrödinger equation, Appl. Math. Lett., 10, 1, 57-59 (1997) · Zbl 0888.35107
[22] Goubet, O., Regularity of the attractor for a weakly damped nonlinear Schrödinger equations on \(R^2\), Adv. Differential Equations, 3, 337-360 (1998) · Zbl 0947.35154
[23] Guo, B.; Zhu, P., Partial regularity of suitable weak solution to the system of the incompressible non-Newtonian fluids, J. Differential Equations, 178, 281-297 (2002) · Zbl 1027.35102
[24] Guo, B.; Lin, G.; Shang, Y., Dynamics of Non-Newtonian Fluid (2006), National Defence Industry Press: National Defence Industry Press Beijing
[25] Hale, J. K., Asymptotic Behavior of Dissipative Systems (1988), AMS: AMS Providence, RI · Zbl 0642.58013
[26] Hale, J. K.; Xin, L.; Raugel, G., Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp., 5, 89-123 (1988) · Zbl 0666.35013
[27] Hale, J. K.; Raugel, G., Upper semicontinuity of the attractors for a singularity perturbed hyperbolic equation, J. Differential Equations, 73, 197-214 (1988) · Zbl 0666.35012
[28] Hale, J. K.; Raugel, G., Lower-semicontinuity of attractors of gradient systems and applications, Ann. Math. Pure Appl., 154, 278-326 (1989) · Zbl 0712.47053
[29] Ju, N., Existence of global attractor for the three-dimensional modified Navier-Stokes equations, Nonlinearity, 14, 777-786 (2001) · Zbl 0995.35052
[30] Kostin, I. N., Lower semicontinuity of a nonhyperbolic attractor, J. London Math. Soc., 52, 568-582 (1995) · Zbl 0856.35066
[31] Kapustyan, A.; Valero, J., Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240, 249-278 (2007) · Zbl 1131.35056
[32] Ladyzhenskaya, O., New equations for the description of the viscous incompressible fluids and solvability in large of the boundary value problems for them, (Boundary Value Problems of Mathematical Physics (1970), AMS: AMS Providence, RI) · Zbl 0202.37802
[33] Lions, J.-L.; Magenes, E., Problèmes aux limits nonhomogènes et applications (1968), Dunod: Dunod Paris · Zbl 0165.10801
[34] Lu, K. N.; Wang, B. X., Upper semicontinuity of attractors for the Klein-Gordon-Schrödinger equation, Internat. J. Bifur. Chaos, 15, 157-168 (2005) · Zbl 1067.35109
[35] Li, Y. S.; Guo, B. L.; Guo, B. L., Asymptotic smoothing effect for weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282, 256-265 (2003) · Zbl 1146.35321
[36] Li, Y. S., Long time behavior for the weakly damped driven long-wave-short-wave resonance equations, J. Differential Equations, 223, 261-289 (2006) · Zbl 1094.35101
[37] Málek, J.; Nečas, J.; Rokyta, M.; Ru̇žičk, M., Weak and Measure-valued Solutions to Evolutionary PDEs (1996), Chapman & Hall: Chapman & Hall New York · Zbl 0851.35002
[38] Melnik, V.; Valero, J., On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6, 83-111 (1998) · Zbl 0915.58063
[39] Melnik, V.; Valero, J., On global attractors of multivalued semiprocess and nonautonomous evolution inclusions, Set-Valued Anal., 8, 375-403 (2000) · Zbl 1063.35040
[40] Pokorný, M., Cauchy problem for the non-Newtonian viscous incompressible fluids, Appl. Math., 41, 169-201 (1996) · Zbl 0863.76003
[41] Rosa, R., The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Anal., 32, 71-85 (1998) · Zbl 0901.35070
[42] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics (1997), Springer: Springer Berlin · Zbl 0871.35001
[43] Vishik, M. V.; Chepyzhov, V. V., Trajectory and global attractors of three-dimensional Navier-Stokes systems, Math. Notes, 77, 177-193 (2002) · Zbl 1130.37404
[44] Wang, Y.; Zhou, S., Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 232, 573-622 (2007) · Zbl 1184.37063
[45] Zhao, C.; Li, Y., \(H^2\)-compact attractor for a non-Newtonian system in two-dimensional unbounded domains, Nonlinear Anal., 56, 1091-1103 (2004) · Zbl 1073.35044
[46] Zhao, C.; Li, Y., A note on the asymptotic smoothing effect of solutions to a non-Newtonian system in 2-D unbounded domains, Nonlinear Anal., 60, 475-483 (2005) · Zbl 1058.35047
[47] Zhao, C.; Zhou, S., Pullback attractors for a non-autonomous incompressible non-Newtonian fluid, J. Differential Equations, 238, 394-425 (2007) · Zbl 1152.35012
[48] Zhao, C.; Zhou, S.; Li, Y., Trajectory attractor and global attractor for a two-dimensional incompressible non-Newtonian fluid, J. Math. Anal. Appl., 325, 1350-1362 (2007) · Zbl 1112.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.