×

Perfect forward secure identity-based authenticated key agreement protocol in the escrow mode. (English) Zbl 1181.94115

Summary: The majority of existing escrowable identity-based key agreement protocols only provide partial forward secrecy. Such protocols are, arguably, not suitable for many real-word applications, as the latter tends to require a stronger sense of forward secrecy-perfect forward secrecy. In this paper, we propose an efficient perfect forward-secure identity-based key agreement protocol in the escrow mode. We prove the security of our protocol in the random oracle model, assuming the intractability of the Gap Bilinear Diffie-Hellman (GBDH) problem.

MSC:

94A62 Authentication, digital signatures and secret sharing

Software:

HMQV

References:

[1] Blake-Wilson S, Menezes A. Authenticated Diffie-Hellman key agreement protocols. In: Proc of SAC 1998, LNCS vol. 1556. New York: Springer-Verlag, 1999. 339–361 · Zbl 0929.68057
[2] Shamir A. Identity-based cryptosystems and signature schemes. In: Proc of CRYPTO 1984, LNCS vol. 196. New York: Springer-Verlag, 1984. 47–53 · Zbl 1359.94626
[3] Boneh D, Franklin M. Identity-based encryption from the Weil pairing. In: Proc of CRTPTO 2001, LNCS vol. 2139. New York: Springer-Verlag, 2001. 213–229 · Zbl 1002.94023
[4] Boyd C, Choo K-K R. Security of two-party identity-based key agreement. In: Proc of MYCRYPT 2005, LNCS vol. 3715. New York: Springer-Verlag, 2005. 229–243 · Zbl 1126.94321
[5] Smart N P. An identity based authenticated key agreement protocol based on the Weil pairing. Electron Lett, 2002, 38(13): 630–632 · Zbl 1190.94033 · doi:10.1049/el:20020387
[6] Shim K. Efficient ID-based authenticated key agreement protocol based on the Weil pairing. Electron Lett, 2003, 39(8): 653–654 · doi:10.1049/el:20030448
[7] Chen L, Kudla C. Identity based key agreement protocols from pairings. In: Proc of the 16th IEEE Computer Security Foundations Workshop. New York: IEEE Computer Society, 2002. 219–213 (See also Cryptology ePrint Archive, Report 2002/184.)
[8] Sun H, Hsieh B. Security analysis of Shim’s authenticated key agreement protocols from pairings. Cryptology ePrint Archive, Report 2003/113, 2003. Available at http://eprint.iacr.org/2003/113 .
[9] Ryu E K, Yoon E J, Yoo Y Y. An efficient ID-based authenticated key agreement protocol from pairings. In: Proc of NETWORKING 2004, LNCS vol. 3042. New York: Springer-Verlag, 2004. 1458–1463
[10] Wang S, Cao Z, Bao H. Security of an efficient ID-based authenticated key agreement protocol from pairings. In: Proc of ISPA’05 Workshops, LNCS vol. 3759. New York: Springer-Verlag, 2005. 342–349
[11] Wang S, Cao Z, Choo K -K R, et al. An improved identitybased key agreement protocol and its security proof. Inf Sci, 2009, 179(3): 307–318 · Zbl 1156.94388 · doi:10.1016/j.ins.2008.09.020
[12] McCullagh N, Barreto P S L M. A new two-party identitybased authenticated key agreement. In: Proc of CT-RSA 2005, LNCS vol. 3376. New York: Springer-Verlag, 2005. 262–274 · Zbl 1079.94563
[13] Xie G. Cryptanalysis of Noel McCullagh and Paulo S. L. M.Barreto’s two-party identity-based key agreement. Cryptology ePrint Archive, Report 2004/308, 2004. Available at http://eprint.iacr.org/2004/308 .
[14] McCullagh N, Barreto P S L M. A new two-party identity-based authenticated key agreement. Cryptology ePrint Archive, Report 2004/122, 2004. Available at http://eprint.iacr.org/2004/122 . (Updated paper of [11].)
[15] Xie G. An ID-based key agreement scheme from pairing. Cryptology ePrint Archive, Report 2005/093, 2005. Available at http://eprint.iacr.org/2005/093
[16] Li S, Yuan Q, Li J. Towards security two-part authenticated key agreement protocols. Cryptology ePrint Archive, Report 2005/300, 2005. Available at http://eprint.iacr.org/2005/300
[17] Wang Y. Efficient identity-based and authenticated key agreement protocol. Cryptology ePrint Archive, Report 2005/108, 2005. Available at http://eprint.iacr.org/2005/108
[18] Yuan Q, Li S. A new efficient ID-based authenticated key agreement protocol. Cryptology ePrint Archive, Report 2005/309, 2005. Available at http://eprint.iacr.org/2005/309
[19] Cheng Z, Chen L, Comley R, Tang Q. Identity-based key agreement with unilateral identity privacy using pairings. In: Proc of ISPEC 2006, LNCS vol. 3903. New York: Springer-Verlag, 2006. 202–213
[20] Choo K -K R, Boyd C, Hitchcock Y. Errors in computational complexity proofs for protocols. In: Proc of ASIACRYPT 2005, LNCS vol. 3788. New York: Springer-Verlag, 2005. 624–643 · Zbl 1154.68334
[21] Canetti R, Krawczyk H. Analysis of key-exchange protocols and their use for building secure channels. In: Proc of EUROCRYPT’ 01, LNCS vol. 2045. New York: Springer-Verlag, 2001. 453–474 · Zbl 0981.94032
[22] Choo K-K R. Key Establishment: proofs and refutations. Ph.D. Thesis. Brisbane: Queensland University of Technology. (Available at http://adt.library.qut.edu.au/adtqut/public/adt-QUT20060928.114022 .)
[23] Kudla C. Special signature schemes and key agreement protocols. PhD Thesis, Royal Holloway University of London, 2006
[24] Kudla C, Paterson K G. Modular security proofs for key agreement protocols. In: Proc of ASIACRYPT’05, LNCS vol. 3788. New York: Springer-Verlag, 2005. 549–565 · Zbl 1154.94464
[25] Okamoto T, Pointcheval D. The Gap-problems: a new class of problems for the security of cryptographic schemes. In: Proc of PKC 2001, LNCS vol. 1992. New York: Springer-Verlag, 2002. 104–118 · Zbl 0984.94509
[26] Bellare M, Rogaway P. Entity authentication and key distribution. In: Proc of CRYPTO 1993, LNCS vol. 773. New York: Springer-Verlag, 1993. 110–125 · Zbl 0870.94019
[27] Barreto P S L M, Kim K Y, Lynn B. Efficient algorithms for pairing-based cryptosystems. In: Proc CRYPTO 2002, LNCS vol. 2442. New York: Springer-Verlag, 2002. 354–368 · Zbl 1026.94520
[28] Galbraith S D, Harrison K, Soldera D. Implementing the Tate pairing. In: Proc of ANTS-V, LNCS vol. 2369. New York: Springer-Verlag, 2002. 324–337 · Zbl 1058.11072
[29] Blake-Wilson S, Johnson C, Menezes A. Key agreement protocols and their security analysis. In: Proc of the sixth IMA International Conference on Cryptography and Coding, LNCS vol. 1355. New York: Springer-Verlag, 1997. 30–45 · Zbl 0904.94008
[30] Choo K -K R, Boyd C, Hitchcock Y, et al. On session identifiers in provably secure protocols: The Bellare-Rogaway threeparty key distribution protocol revisited. In: Proc of SCN 2004, LNCS vol. 3352. New York: Springer-Verlag, 2005. 351–366 · Zbl 1116.94317
[31] Cheng Z, Nistazakis M, Comley R, et al. On the indistinguishability-based security model of key agreement protocols–simple cases. In: Proc of ACNS 2004 (technical track). (The full paper available on Cryptology ePrint Archive, Report 2005/129)
[32] Krawczyk H. HMQV: A high performance secure Diffie-Hellman protocol. In: Proc of Crypto 2005, LNCS vol. 3621. New York: Springer-Verlag, 2005. 546–566 · Zbl 1145.94445
[33] Sakai R, Ohgishi K, Kasahara M. Cryptosystems based on pairing. In: Proc of the 2000 Symposium on Cryptography and Information Security. Okinawa, Japan, 2000
[34] Cheng Z, Chen L. On security proof of McCullagh-Barreto’s key agreement protocol and its variants. Int J Secur Netw, 2007, 2(3/4): 251–259 · doi:10.1504/IJSN.2007.013178
[35] Diffie W, Hellman M E. New directions in cryptography. IEEE Trans Inf Theory, 1976, 22(6): 644–654 · Zbl 0435.94018 · doi:10.1109/TIT.1976.1055638
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.