×

Intrinsic ultracontractivity for stable semigroups on unbounded open sets. (English) Zbl 1180.47031

Let \((X_t)\) denote the isotropic stable process of index \(\alpha<2\), i.e., a subordination of a standard Brownian motion by an \(\alpha/2\)-stable subordinator on \(\mathbb R_+\). Let \(D\subseteq \mathbb R^d\) be an open – here unbounded – domain. Let, furthermore, \(\tau_D\) denote the first exit time from \(D\) and define \((P_t^D)\) to be the transition semigroup of the process killed on exiting \(D\), \(P_t^Df(x)=E_x(\tau_D>t; f(X_t))= \int p_t^D(x,y)f(y)\,dy\). Here \(p_t^D\) denotes the kernel of \(P_t^D\). Throughout it is assumed that the operators \(P_t^D\) are compact operators on \(L^2\) and \((\varphi_n = \varphi_n^D)_{n\geq 1}\) is a complete ONS of eigenfunctions with corresponding eigenvalues \(\lambda_n = \lambda_n^D\). \((P_t^D)\) is called intrinsically ultracontractive (IU) if for all \(t>0\) we have \(p_t^D(x,y)\leq C_{D,t}\varphi_1(x)\varphi_1(y)\).
Previous investigations were often restricted to the case of bounded domains or \(\alpha =2\), i.e., to Brownian motions \((X_t)\). Since for \(\alpha < 2\) the process is a jump-process, the results differ essentially.
The first results are obtained for general open domains, in particular (Theorem 1), \(\varphi_1(x) \approx \left(1+|x|\right)^{-d-\alpha} E_x(\tau_D)\) and (Theorem 2) property (IU) is equivalent to an upper estimate \(p_t^D(x,y)\leq C_{D,t}\left(1+|x|\right)^{-d-\alpha}\left(1+|y|\right)^{-d-\alpha}\).
For horn-shaped domains \(D=D_f= \{x:x_1>0\), \(|(x_2, \dots x_d)|\leq f(x_1)\}\) which are non-degenerate, property (IU) is characterized by the behaviour of \((f(u))^\alpha\log u\) for \(u\to\infty\) (Theorem 5).
The proofs rely on boundary Harnack inequalities, in fact, on a uniform version proved by K.Bogdan, T.Kulczycki and M.Kwaśnicki [Probab.Theory Relat.Fields 140, No.3–4, 345–381 (2008; Zbl 1146.31004)]; see also the literature there.
For the case of Brownian motions and unbounded domains, see, e.g., B.Davies [J. Funct.Anal.100, No.1, 162–180 (1991; Zbl 0766.47026)], P.J.Méndes-Hernándes [Mich.Math.J.47, No.1, 79–99 (2000; Zbl 0978.47032)] and the references therein.

MSC:

47D07 Markov semigroups and applications to diffusion processes
60G52 Stable stochastic processes
60J45 Probabilistic potential theory
Full Text: DOI

References:

[1] Bañuelos, R.: Intrinsic ultracontractivity and eigenvalue estimates for Schrödinger operators. J. Funct. Anal. 100, 181–206 (1991) · Zbl 0766.47025 · doi:10.1016/0022-1236(91)90107-G
[2] Bañuelos, R.: Lifetime and heat kernel estimates in nonsmooth domains. In: Proc. University of Chicago Conference in Partial Differential Equations with Minimal Smoothness, vol. 42. IMA, Minneapolis (1990) · Zbl 0797.60069
[3] Bañuelos, R.: Sharp estimates for Dirichlet eigenfunctions in simply connected domains. J. Differential Equations 125(1), 282–298 (1996) · Zbl 0856.35093 · doi:10.1006/jdeq.1996.0032
[4] Bañuelos, R., van den Berg, M.: Dirichlet eigenfunctions for horn-shaped regions and Laplacians on cross sections. J. London Math. Soc. 53, 503–511 (1996) · Zbl 0863.35070
[5] Bañuelos, R., Davis, B.: Geometrical characterization of intrinsic ultracontractivity for planar domains with boundaries given by graphs of functions. Indiana Univ. Math J. 41, 885–913 (1992) · Zbl 0836.60082 · doi:10.1512/iumj.1992.41.41049
[6] Bañuelos, R., Davis, B.: Sharp estimates for Dirichlet eigenfunctions in horn-shaped regions. Comm. Math. Phys. 150(1), 209–215 (1992) · Zbl 0772.35042 · doi:10.1007/BF02096574
[7] Bañuelos, R., Kulczycki, T.: The Cauchy process and the Steklov problem. J. Funct. Anal. 211(2), 355–423 (2004) · Zbl 1055.60072 · doi:10.1016/j.jfa.2004.02.005
[8] Bass, R.F., Burdzy, K.: Lifetimes of conditioned diffusions. Probab. Theory Related Fields 91, 405–443 (1992) · Zbl 0739.60069 · doi:10.1007/BF01192065
[9] Bliedtner, J., Hansen, W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer, Berlin (1986) · Zbl 0706.31001
[10] Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99, 540–554 (1961) · Zbl 0118.13005
[11] Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123, 43–80 (1997) · Zbl 0870.31009
[12] Bogdan, K., Byczkowski, T.: Potential theory for the {\(\alpha\)}-stable Schrödinger operator on bounded Lipschitz domains. Stud. Math. 133(1), 53–92 (1999) · Zbl 0923.31003
[13] Bogdan, K., Byczkowski, T.: Probabilistic proof of boundary Harnack principle for {\(\alpha\)}-harmonic functions. Potential Anal. 11(2), 135–156 (1999) · Zbl 0936.31009 · doi:10.1023/A:1008637918784
[14] Bogdan, K., Kulczycki, T., Kwaśnicki, M.: Estimates and structure of {\(\alpha\)}-harmonic functions. Probab. Theory Related Fields 140(3–4), 345–381 (2008) · Zbl 1146.31004 · doi:10.1007/s00440-007-0067-0
[15] Bogdan, K., \.Zak, T.: On Kelvin transformation. J. Theoret. Probab. 19(1), 89–120 (2006) · Zbl 1105.60057 · doi:10.1007/s10959-006-0003-8
[16] Chen, Z.Q.: Multidimensional symmetric stable processes. Korean J. Comput. Appl. Math. 6(2), 227–266 (1999) · Zbl 0937.60069
[17] Chen, Z.Q., Song, R.: Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Funct. Anal. 150(1), 204–239 (1997) · Zbl 0886.60072 · doi:10.1006/jfan.1997.3104
[18] Chen, Z.Q., Song, R.: Intrinsic ultracontractivity, conditional lifetimes and conditional gauge for symmetric stable processes on rough domains. Illinois J. Math. 44(1), 138–160 (2000) · Zbl 0959.60035
[19] Davies, E.B.: Criteria for ultracontractivity. Ann. Inst. Henri Poincare 43A, 181–194 (1985) · Zbl 0589.35030
[20] Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984) · Zbl 0568.47034 · doi:10.1016/0022-1236(84)90076-4
[21] Davis, B.: Intrinsic ultracontractivity and the Dirichlet Laplacian. J. Funct. Anal. 100(1), 162–180 (1991) · Zbl 0766.47026 · doi:10.1016/0022-1236(91)90106-F
[22] DeBlassie, D.: The lifetime of conditioned Brownian motion in certain Lipschitz domains. Probab. Theory Related Fields 75, 431–458 (1987) · Zbl 0592.60068 · doi:10.1007/BF00320080
[23] Dziubański, J.: Asymptotic behaviour of densities of stable semigroups of measures. Probab. Theory Related Fields 87(4), 459–467 (1992) · Zbl 0695.60013 · doi:10.1007/BF01304275
[24] Fabes, E.B., Garofalo, N., Salsa, S.: A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations. Illinois J. Math. 30, 536–565 (1986) · Zbl 0625.35006
[25] Getoor, R.K.: Markov operators and their associated semi-groups. Pacific J. Math. 9, 449–472 (1959) · Zbl 0086.33804
[26] Grzywny, T.: Intrinsic ultracontractivity for Lévy processes. Probab. Math. Statist. 28(1), 91–106 (2008) · Zbl 1146.60043
[27] Kenig, C.E., Pipher, J.: The h-path distribution of the lifetime of conditioned Brownian motion for nonsmooth domains. Probab. Theory Related Fields 82(4), 615–623 (1989) · Zbl 0672.60079 · doi:10.1007/BF00341286
[28] Kim, P., Song, R.: Intrinsic ultracontractivity for non-symmetric Levy processes. Forum Math. 21(1), 43–66 (2009) · Zbl 1175.47040 · doi:10.1515/FORUM.2009.003
[29] Kulczycki, T.: Intrinsic ultracontractivity for symmetric stable processes. Bull. Polish Acad. Sci. Math. 46(3), 325–334 (1998) · Zbl 0917.60071
[30] Landkof, N.S.: Foundations of Modern Potential theory. Springer, New York (1972) · Zbl 0253.31001
[31] Lindeman, A., Pang, M.H., Zhao, Z.: Sharp bounds for ground state eigenfunctions on domains with horns and cusps. J. Math. Anal. Appl. 212(2), 381–416 (1997) · Zbl 0889.35071 · doi:10.1006/jmaa.1997.5508
[32] Méndez-Hernández, P.J.: Toward a geometrical characterization of intrinsic ultracontractivity of the Dirichlet Laplacian. Michigan Math. J. 47, 79–99 (2000) · Zbl 0978.47032 · doi:10.1307/mmj/1030374669
[33] Ouhabaz, E.M., Wang, F.-Y.: Sharp estimates for intrinsic ultracontractivity on C 1,{\(\alpha\)} -domains. Manuscripta Math. 112, 229–244 (2007) · Zbl 1128.58016 · doi:10.1007/s00229-006-0065-z
[34] Port, S.: Hitting times and potentials for recurrent stable processes. J. Anal. Math. 20, 371–395 (1967) · Zbl 0157.24702 · doi:10.1007/BF02786681
[35] Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Related Fields 125(4), 578–592 (2003) · Zbl 1022.60078 · doi:10.1007/s00440-002-0251-1
[36] Song, R., Vondracek, Z.: Potential theory of special subordinators and subordinate killed stable processes. J. Theoret. Probab. 19(4), 817–847 (2006) · Zbl 1119.60063 · doi:10.1007/s10959-006-0045-y
[37] Song, R., Vondracek, Z.: Parabolic Harnack inequality for the mixture of Brownian motion and stable process. Tohoku Math. J. 59(1), 1–19 (2007) · Zbl 1143.60049 · doi:10.2748/tmj/1176734744
[38] Song, R., Wu, J.M.: Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168, 403–427 (1999) · Zbl 0945.31006 · doi:10.1006/jfan.1999.3470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.