×

Simulations of the spreading of a vesicle on a substrate surface mediated by receptor-ligand binding. (English) Zbl 1178.74108


MSC:

74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS
Full Text: DOI

References:

[1] ABAQUS User’s Manual, 2002. Version 6.3, ABAQUS Inc., Pawtucket, RI, USA.; ABAQUS User’s Manual, 2002. Version 6.3, ABAQUS Inc., Pawtucket, RI, USA.
[2] Balaban, N. Q.; Schwarz, U. S.; Riveline, D.; Goichberg, P.; Tzur, G.; Sabanay, I.; Mahalu, D.; Safran, S.; Bershadsky, A.; Addadi, L.; Geiger, B., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nat. Cell Biol., 3, 466-772 (2001)
[3] Bao, G.; Bao, X. R., Shedding light on the dynamics of endocytosis and viral budding, Proc. Natl. Acad. Sci. USA, 102, 29, 9997-9998 (2005)
[4] Bao, G.; Suresh, S., Cell and molecular mechanics of biological materials, Nat. Mater., 2, 715-725 (2003)
[5] Bell, G. I., Models for the specific adhesion of cells to cells, Science, 200, 4342, 618-627 (1978)
[6] Bell, G. I.; Dembo, M.; Bongrand, P., Cell adhesion, Biophys. J., 45, 1051-1064 (1984)
[7] Beningo, K. A.; Dembo, M.; Kaverina, I.; Small, J. V.; Wang, Y. L., Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts, J. Cell Biol., 153, 881-888 (2001)
[8] Boulbitch, A.; Guttenberg, Z.; Sackmann, E., Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system, Biophys. J., 81, 5, 2743-2751 (2001)
[9] Dao, M.; Lim, C. T.; Suresh, S., Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids, 51, 2259-2280 (2003)
[10] Doebereiner, H.G., Dubin-Thaler, B., Giannone, G., Xenias, H.S., Sheetz, M.P., 2004. Dynamic phase transition in cell spreading. Phys. Rev. Lett. 93 (10), Art. No. 108105.; Doebereiner, H.G., Dubin-Thaler, B., Giannone, G., Xenias, H.S., Sheetz, M.P., 2004. Dynamic phase transition in cell spreading. Phys. Rev. Lett. 93 (10), Art. No. 108105.
[11] Dubin-Thaler, B. J.; Giannone, G.; Doebereiner, H. G.; Sheetz, M. P., Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs, Biophys. J., 86, 3, 1794-1806 (2004)
[12] Evans, E. A., Detailed mechanics of membrane-membrane adhesion and separation, Biophys. J., 48, 175-183 (1985)
[13] Evans, E. A.; Hochmuth, R. M., Membrane viscoelasticity, Biophys. J., 16, 1, 1-11 (1976)
[14] Freund, L. B.; Lin, Y., The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion, J. Mech. Phys. Solids, 52, 2455-2472 (2004) · Zbl 1084.74034
[15] Gallant, N. D.; Michael, K. E.; Garcia, A. J., Cell adhesion strengthening: contributions of adhesive area, integrin, binding, and focal adhesion assembly, Mol. Biol. Cell, 16, 4329-4340 (2005)
[16] Gao, H.; Shi, W.; Freund, L. B., Mechanics of receptor-mediated endocytosis, Proc. Natl. Acad. Sci. USA, 102, 27, 9469-9474 (2005)
[17] Giannone, G.; Dubin-Thaler, B. J.; Doebereiner, H. G.; Kieffer, N.; Bresnick, A. R.; Sheetz, M. P., Periodic lamellipodial contractions correlate with rearward actin waves, Cell, 116, 431-443 (2004)
[18] Hategan, A.; Sengupta, K.; Kahn, S.; Sackmann, E.; Discher, D. E., Topological pattern dynamics in passive adhesion of cell membranes, Biophys. J., 87, 5, 3547-3560 (2004)
[19] Irvine, D. J.; Hue, K. A.; Mayes, A. M.; Griffith, L. G., Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands, Biophys. J., 82, 1, 120-132 (2002)
[20] Kloboucek, A.; Behrisch, A.; Faix, J.; Sackmann, E., Adhesion-induced receptor segregation and adhesion plague formation: a model membrane study, Biophys. J., 77, 2311-2328 (1999)
[21] Lim, C. T.; Dao, M.; Suresh, S.; Sow, C. H.; Chew, K. T., Large deformation of living cells using laser traps, Acta Mater., 52, 1837-1845 (2004)
[22] Liu, P.; Cheng, L.; Zhang, Y. W., Measuring interface parameters and toughness—a computational study, Acta Mater., 49, 5, 817-825 (2001)
[23] N’Dri, N. A.; Shyy, W.; Tran-Son-Tay, R., Computational modeling of cell adhesion and movement using a continuum-kinetics approach, Biophys. J., 85, 4, 2273-2286 (2003)
[24] Park, K.; Mao, F. W.; Park, H., Morphological characterization of surface-induced platelet activation, Biomaterials, 11, 24-31 (1990)
[25] Peeters, E. A.G.; Oomens, C. W.J.; Bouten, C. V.C.; Bader, D. L.; Baaijens, F. P.T., Mechanical and failure properties of single attachd cells under compression, J. Biomech., 38, 1685-1693 (2005)
[26] Reinhart-King, C. A.; Dembo, M.; Hammer, D. A., The dynamics and mechanics of endothelial cell spreading, Biophys. J., 89, 1, 676-689 (2005)
[27] Seifert, U.; Lipowsky, R., Adhesion of vesicles, Phys. Rev. A, 42, 8, 4768-4771 (1990)
[28] Shenoy, V. B.; Freund, L. B., Growth and shape stability of a biological membrane adhesion complex in the diffusion mediated regime, Proc. Natl. Acad. Sci. USA, 102, 9, 3213-3218 (2005)
[29] Tan, J. L.; Tien, J.; Pirone, D. M.; Gray, D. S.; Bhadriraju, K.; Chen, C. S., Cells lying on a bed of microneedles: an approach to isolate mechanical force, Proc. Natl. Acad. Sci. USA, 100, 1484-1489 (2003)
[30] Tvergaard, V.; Hutchsinson, J. W., The influence of plasticity on mixed-mode interface toughness, J. Mech. Phys. Solids, 41, 1119-1135 (1993) · Zbl 0775.73219
[31] Weatherburn, C. E., On differential invariants in geometry of surfaces, with some applications to mathematical physics, Q. J. Pure Appl. Math. L, 3, 230-269 (1925) · JFM 51.0544.07
[32] Wolgemuth, C. W., Lamellipodial contractions during crawling and spreading, Biophys. J., 89, 3, 1643-1649 (2005)
[33] Zhang, Y. W.; Bower, A. F.; Xia, L.; Shih, C. F., Three dimensional finite element analysis of the evolution of the voids and thin films by strain and electromigration induced surface diffusion, J. Mech. Phys. Solids, 47, 173-199 (1999) · Zbl 0964.74073
[34] Zhu, C., Kinetics and mechanics of cell adhesion, J. Biomech., 33, 23-33 (2000)
[35] Zhu, C.; Bao, G.; Wang, N., Annu. Rev. Biomed. Eng., 2, 189-226 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.