×

Spectral and propagation results for magnetic Schrödinger operators; a \(C^*\)-algebraic framework. (English) Zbl 1173.46048

Authors’ abstract: We study generalized magnetic Schrödinger operators of the form \(H_h(A, V)= h(\Pi^A)+ V\), where \(h\) is an elliptic symbol, \(\Pi^A= -i\nabla- A\), with \(A\) a vector potential defining a variable magnetic field \(B\), and \(V\) is a scalar potential. We are mainly interested in anisotropic functions \(B\) and \(V\). The first step is to show that these operators are affiliated to suitable \(C^*\)-algebras of (magnetic) pseudodifferential operators. A study of the quotient of these \(C^*\)-algebras by the ideal of compact operators leads to formulae for the essential spectrum of \(H_h(A, V)\), expressed as a union of spectra of some asymptotic operators, supported by the quasi-orbits of a suitable dynamical system. The quotient of the same \(C^*\)-algebras by other ideals give localization results on the functional calculus of the operators \(H_h(A, V)\), which can be interpreted as non-propagation properties of their unitary groups.

MSC:

46L60 Applications of selfadjoint operator algebras to physics
35Q40 PDEs in connection with quantum mechanics
46L55 Noncommutative dynamical systems
46N50 Applications of functional analysis in quantum physics
47F05 General theory of partial differential operators
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Amrein, W. O.; Boutet de Monvel, A.; Georgescu, V., \(C_0\)-Groups, Commutator Methods and Spectral Theory of \(N\)-Body Hamiltonians (1996), Birkhäuser: Birkhäuser Basel · Zbl 0962.47500
[2] Amrein, W. O.; Măntoiu, M.; Purice, R., Propagation properties for Schrödinger operators affiliated with certain \(C^\ast \)-algebras, Ann. Henri Poincaré, 3, 1215-1232 (2002) · Zbl 1029.81066
[3] Bellissard, J., \(K\)-theory of \(C^\ast \)-algebras in solid state physics, (Statistical Mechanics and Field Theory: Mathematical Aspects. Statistical Mechanics and Field Theory: Mathematical Aspects, Groningen, 1985. Statistical Mechanics and Field Theory: Mathematical Aspects. Statistical Mechanics and Field Theory: Mathematical Aspects, Groningen, 1985, Lecture Notes in Phys., vol. 257 (1986), Springer: Springer Berlin), 99-156 · Zbl 0612.46066
[4] Bellissard, J., Gap labelling theorems for Schrödinger operators, (From Number Theory to Physics. From Number Theory to Physics, Les Houches, 1989 (1992), Springer: Springer Berlin), 538-630 · Zbl 0833.47056
[5] Busby, R. C.; Smith, H. A., Representations of twisted group algebras, Trans. Amer. Math. Soc., 149, 503-537 (1970) · Zbl 0201.45904
[6] Coburn, L. A.; Douglas, R. G.; Schaeffer, D. G.; Singer, I. M., \(C\)-algebras of operators on a half-space. II. Index theory, Inst. Hautes Études Sci. Publ. Math., 40, 69-79 (1971) · Zbl 0241.47027
[7] Coburn, L. A.; Moyer, R. D.; Singer, I. M., \(C\)-algebras of almost periodic pseudodifferential operators, Acta Math., 130, 279-307 (1973) · Zbl 0263.47042
[8] Cornean, H. D.; Nenciu, G., On eigenfunction decay for two-dimensional magnetic Schrödinger operators, Comm. Math. Phys., 192, 3, 671-685 (1998) · Zbl 0915.35013
[9] Davies, E. B.; Simon, B., Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys., 63, 277-301 (1978) · Zbl 0393.34015
[10] Dixmier, J., Les \(C^\ast \)-Algèbres et leurs représentations (1964), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0152.32902
[11] Georgescu, V.; Iftimovici, A., \(C^\ast \)-algebras of energy observables: II. Graded symplectic algebras and magnetic Hamiltonians, preprint 01-99
[12] Georgescu, V.; Iftimovici, A., Crossed products of \(C^\ast \)-algebras and spectral analysis of quantum Hamiltonians, Comm. Math. Phys., 228, 519-560 (2002) · Zbl 1005.81026
[13] Georgescu, V.; Iftimovici, A., \(C^\ast \)-algebras of quantum Hamiltonians, (Operator Algebras and Mathematical Physics, Conference Proceedings. Operator Algebras and Mathematical Physics, Conference Proceedings, Constanţa, Romania, July 2001 (2003), Theta Foundation), 123-167 · Zbl 1247.46060
[14] Georgescu, V.; Iftimovici, A., Localizations at infinity and essential spectrum of quantum Hamiltonians: I. General theory, Rev. Math. Phys., 18, 4, 417-483 (2006) · Zbl 1109.47004
[15] Helffer, B.; Mohamed, A., Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble), 38, 95-112 (1988) · Zbl 0638.47047
[16] Iwatsuka, A., Examples of absolutely continuous Schrödinger operators in magnetic fields, Publ. Res. Inst. Math. Sci., 21, 385-401 (1985) · Zbl 0623.47058
[17] Karasev, M. V.; Osborn, T. A., Symplectic areas, quantization and dynamics in electromagnetic fields, J. Math. Phys., 43, 756-788 (2002) · Zbl 1059.81097
[18] Karasev, M. V.; Osborn, T. A., Quantum magnetic algebra and magnetic curvature, J. Phys. A, 37, 2345-2363 (2004) · Zbl 1050.81039
[19] Last, Y.; Simon, B., The essential spectrum of Schrödinger, Jacobi and CMV operators, J. Anal. Math., 98, 183-220 (2006) · Zbl 1145.34052
[20] Lauter, R.; Nistor, V., Analysis of geometric operators on open manifolds: A groupoid approach, (Quantization of Singular Symplectic Quotients. Quantization of Singular Symplectic Quotients, Progr. Math., vol. 198 (2001), Birkhäuser: Birkhäuser Basel), 181-229 · Zbl 1018.58009
[21] Lions, J.-L., Dérivées intermédiaires et espaces intermédiaires, C. R. Acad. Sci. Paris, 256, 4343-4345 (1963) · Zbl 0124.31802
[22] Măntoiu, M., \(C^\ast \)-algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators, J. Reine Angew. Math., 550, 211-229 (2002) · Zbl 1036.46052
[23] Măntoiu, M., \(C^\ast \)-algebras, dynamical systems, spectral analysis, (Operator Algebras and Mathematical Physics, Conference Proceedings. Operator Algebras and Mathematical Physics, Conference Proceedings, Constanţa, Romania, July 2001 (2003), Theta Foundation), 299-314 · Zbl 1284.46059
[24] Măntoiu, M., On abelian \(C^\ast \)-algebras that are independent with respect to a filter, J. London Math. Soc. (2), 71, 3, 740-758 (2005) · Zbl 1088.46026
[25] Măntoiu, M.; Purice, R., Some propagation properties of the Iwatsuka model, Comm. Math. Phys., 188, 691-708 (1997) · Zbl 0992.81021
[26] Măntoiu, M.; Purice, R., The algebra of observables in a magnetic field, (Mathematical Results in Quantum Mechanics. Mathematical Results in Quantum Mechanics, Taxco, 2001. Mathematical Results in Quantum Mechanics. Mathematical Results in Quantum Mechanics, Taxco, 2001, Contemp. Math., vol. 307 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 239-245 · Zbl 1032.46081
[27] Măntoiu, M.; Purice, R., The magnetic Weyl calculus, J. Math. Phys., 45, 4, 1394-1417 (2004) · Zbl 1068.81043
[28] Măntoiu, M.; Purice, R.; Richard, S., Twisted crossed products and magnetic pseudodifferential operators, (Advances in Operator Algebras and Mathematical Physics. Advances in Operator Algebras and Mathematical Physics, Theta Ser. Adv. Math., vol. 5 (2005), Theta: Theta Bucharest), 137-172 · Zbl 1199.46158
[29] Măntoiu, M.; Purice, R., Strict deformation quantization for a particle in a variable magnetic field, J. Math. Phys., 46, 5, 052105 (2005), 15 pp · Zbl 1110.81118
[30] Müller, M., Product rule for gauge invariant Weyl symbols and its applications to the semiclassical description of guiding center motion, J. Phys. A, 32, 1035-1052 (1999) · Zbl 1055.81577
[31] Nenciu, G., On asymptotic perturbation theory for quantum mechanics: Almost invariant subspaces and gauge invariant magnetic perturbation theory, J. Math. Phys., 43, 3, 1273-1298 (2002) · Zbl 1059.81064
[32] Nistor, V., Pseudodifferential operators on non-compact manifolds and analysis on polyhedral domains, (Proceedings of the Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds. Proceedings of the Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, Roskilde University. Proceedings of the Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds. Proceedings of the Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, Roskilde University, Contemp. Math. (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 307-328 · Zbl 1091.58017
[33] Packer, J. A.; Raeburn, I., Twisted crossed products of \(C^\ast \)-algebras, Math. Proc. Cambridge Philos. Soc., 106, 293-311 (1989) · Zbl 0757.46056
[34] Packer, J. A.; Raeburn, I., Twisted crossed products of \(C^\ast \)-algebras II, Math. Ann., 287, 595-612 (1990) · Zbl 0682.46043
[35] Pascu, M., On the essential spectrum of the relativistic magnetic operator, Osaka J. Math., 39, 963-978 (2002) · Zbl 1147.81304
[36] Rabinovich, V. S., Essential spectrum of perturbed pseudo-differential operators. Applications to Scrödinger, Klein-Gordon and Dirac operators, Russian J. Math. Phys., 12, 62-80 (2005) · Zbl 1153.47042
[37] Rabinovich, V. S.; Roch, S.; Roe, J., Fredholm indices of band-dominated operators, Integral Equations Operator Theory, 49, 221-238 (2004) · Zbl 1068.47016
[38] Rabinovich, V. S.; Roch, S.; Silbermann, B., Fredholm theory and finite section method for band-dominated operators, Integral Equations Operator Theory, 30, 452-495 (1998) · Zbl 0909.47023
[39] Rabinovich, V. S.; Roch, S.; Silbermann, B., Limit Operators and Their Applications in Operator Theory, Oper. Theory Adv. Appl., vol. 150 (2004), Birkhäuser: Birkhäuser Basel · Zbl 1077.47002
[40] Renault, J., A Groupoid Approach to \(C^\ast \)-Algebras, Lecture Notes in Math., vol. 793 (1980), Springer: Springer Berlin · Zbl 0433.46049
[41] Richard, S., Spectral and scattering theory for Schrödinger operators with Cartesian anisotropy, Publ. Res. Inst. Math. Sci., 41, 73-111 (2005) · Zbl 1135.35056
[42] Schwartz, L., Théorie des Distributions (1973), Hermann
[43] Shubin, M. A., The spectral theory and the index of elliptic operators with almost periodic coefficients, Russian Math. Surveys, 34, 109-157 (1979) · Zbl 0448.47032
[44] Woronowicz, S. L., Unbounded Elements Affiliated with \(C\)-algebras and non compact quantum groups, Comm. Math. Phys., 136, 399-432 (1991) · Zbl 0743.46080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.