×

Algebraic analysis of bifurcation and limit cycles for biological systems. (English) Zbl 1171.92307

Horimoto, Katsuhisa (ed.) et al., Algebraic biology. Third international conference, AB 2008, Castle of Hagenberg, Austria, July 31–August 2, 2008. Proceedings. Berlin: Springer (ISBN 978-3-540-85100-4/pbk). Lecture Notes in Computer Science 5147, 156-171 (2008).
Summary: In this paper, we show how to analyze bifurcation and limit cycles for biological systems by using an algebraic approach based on triangular decomposition, Gröbner bases, discriminant varieties, real solution classification, and quantifier elimination by partial CAD. The analysis of bifurcation and limit cycles for a concrete two-dimensional system, the self-assembling micelle system with chemical sinks, is presented in detail. It is proved that this system may have a focus of order 3, from which three limit cycles can be constructed by small perturbation. The applicability of our approach is further illustrated by the construction of limit cycles for a two-dimensional Kolmogorov prey-predator system and a three-dimensional Lotka-Volterra system.
For the entire collection see [Zbl 1154.92002].

MSC:

92C05 Biophysics
34C60 Qualitative investigation and simulation of ordinary differential equation models
37M20 Computational methods for bifurcation problems in dynamical systems
68W30 Symbolic computation and algebraic computation

Software:

QEPCAD; FGb

References:

[1] Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. G., Theory of Bifurcations of Dynamic Systems on a Plane (1971), Jerusalem: Israel Program of Scientific Translations, Jerusalem
[2] Ball, R.; Haymet, A. D.J., Bistability and hysteresis in self-assembling micelle systems: Phenomenology and deterministic dynamics, Phys. Chem. Chem. Phys., 3, 4753-4761 (2001) · doi:10.1039/b104483b
[3] Buchberger, B.; Bose, N. K., Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory, 184-232 (1985), Dordrecht: Reidel, Dordrecht · Zbl 0587.13009
[4] Carr, J., Applications of Center Manifold Theory (1981), New York: Springer, New York · Zbl 0464.58001
[5] Chow, S.-N.; Hale, J. K., Methods of Bifurcation Theory (1982), New York: Springer, New York · Zbl 0487.47039
[6] Collins, G. E.; Hong, H., Partial cylindrical algebraic decomposition for quantifier elimination, J. Symb. Comput., 12, 299-328 (1991) · Zbl 0754.68063 · doi:10.1016/S0747-7171(08)80152-6
[7] El Kahoui, M.; Weber, A., Deciding Hopf bifurcations by quantifier elimination in a software-component architecture, J. Symb. Comput., 30, 161-179 (2000) · Zbl 0965.65137 · doi:10.1006/jsco.1999.0353
[8] Farr, W. W.; Li, C.; Labouriau, I. S.; Langford, W. F., Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem, J. Math. Anal., 20, 1, 13-30 (1989) · Zbl 0682.58035 · doi:10.1137/0520002
[9] Faugère, J.-C., A new efficient algorithm for computing Gröbner bases (F_4), J. Pure Appl. Algebra, 139, 61-88 (1999) · Zbl 0930.68174 · doi:10.1016/S0022-4049(99)00005-5
[10] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (1998), New York: Springer, New York · Zbl 0914.58025
[11] Lazard, D.; Rouillier, F., Solving parametric polynomial systems, J. Symb. Comput., 42, 636-667 (2007) · Zbl 1156.14044 · doi:10.1016/j.jsc.2007.01.007
[12] Lu, Z.; He, B., Multiple stable limit cycles for a cubic Kolmogorov prey-predator system, J. Eng. Math., 18, 4, 115-117 (2001) · Zbl 1021.34024
[13] Lu, Z.; Luo, Y., Two limit cycles in three-dimensional Lotka-Volterra systems, Comput. Math. Appl., 44, 1-2, 51-66 (2002) · Zbl 1014.34034 · doi:10.1016/S0898-1221(02)00129-3
[14] Miller, R. K.; Michel, A. N., Ordinary Differential Equations (1982), New York, London: Academic Press, New York, London · Zbl 0552.34001
[15] Niu, W.; Wang, D.; Zheng, Z., Application of quantifier elimination and discriminant varieties to stability analysis of biological systems, Proceedings MACIS 2006, 243-253 (2006), China: Beihang University, China
[16] Niu, W.; Wang, D., Algebraic approaches to stability analysis of biological systems, Math. Comput. Sci., 1, 3, 507-539 (2008) · Zbl 1138.68668 · doi:10.1007/s11786-007-0039-x
[17] Shahruz, S. M.; Kalkin, D. A., Limit cycle behavior in three- or higher-dimensional non-linear systems: The Lotka-Volterra example, J. Sound Vibration, 246, 2, 379-386 (2001) · Zbl 1237.34038 · doi:10.1006/jsvi.2000.3582
[18] Shi, S., A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica (A), 23, 153-158 (1980) · Zbl 0431.34024
[19] Wang, D., A class of cubic differential systems with 6-tuple focus, J. Diff. Eqns., 87, 305-315 (1990) · Zbl 0712.34044 · doi:10.1016/0022-0396(90)90004-9
[20] Wang, D., Mechanical manipulation for a class of differential systems, J. Symb. Comput., 12, 233-254 (1991) · Zbl 0745.93067 · doi:10.1016/S0747-7171(08)80127-7
[21] Wang, D., Elimination Methods (2001), Wien, New York: Springer, Wien, New York · Zbl 0964.13014
[22] Wang, D., Elimination Practice: Software Tools and Applications (2004), London: Imperial College Press, London · Zbl 1099.13047
[23] Wang, D.; Xia, B.; Kauers, M., Stability analysis of biological systems with real solution classification, Proceedings ISSAC 2005, 354-361 (2005), New York: ACM Press, New York · Zbl 1360.92048 · doi:10.1145/1073884.1073933
[24] Wang, D.; Xia, B.; Anai, H.; Horimoto, K., Algebraic analysis of stability for some biological systems, Proceedings AB 2005, 75-83 (2005), Tokyo: Universal Academy Press, Tokyo
[25] Wu, W.-t., Mathematics Mechanization (2000), Beijing: Science Press/Kluwer, Beijing · Zbl 0987.68074
[26] Xiao, D.; Li, W., Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Diff. Eqns., 164, 1-15 (2000) · Zbl 0960.34022 · doi:10.1006/jdeq.1999.3729
[27] Yang, L.; Xia, B.; Dolzmann, A.; Seidl, A.; Sturm, T., Real solution classifications of parametric semi-algebraic systems, Algorithmic Algebra and Logic—Proceedings A3L 2005, 281-289 (2005), Norderstedt: Herstellung and Verlag, Norderstedt
[28] Ye, Y.; Cai, S.; Chen, L.; Huang, K.; Luo, D.; Ma, Z.; Wang, E.; Wang, M.; Yang, X., Theory of Limit Cycles (1986), Providence: Amer. Math. Soc., Providence · Zbl 0588.34022
[29] Zhang, Z.; Ding, T.; Huang, W.; Dong, Z., Qualitative Theory of Differential Equations (1992), Providence: Amer. Math. Soc., Providence · Zbl 0779.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.