×

Blow-ups and resolutions of strong Kähler with torsion metrics. (English) Zbl 1168.53014

A Hermitian metric \(g\) on a complex manifold \((M,J)\) is said to be strong Kähler with torsion (strong \(KT)\) if the fundamental 2-form \(F\) satisfies \(\partial\overline\partial F=0\). Since this condition is weaker than the Kähler one, any Kähler metric is strong \(KT\). The authors investigate which properties that hold for Kähler manifolds are still valid in the context of strong \(KT\) geometry. Firstly, they show that the behaviour of strong \(KT\) structures under small deformations of the complex structure depends on the complex dimension of the given manifold. In fact, a result of Gauduchon helps in proving that, if \((M,J)\) is a compact complex surface, then the strong \(KT\) condition is stable under small deformations of \(J\). On the other hand, the Iwasawa manifold \(I(3)\) admits a 2-parameter family \(\{J_{t,s}\}\) of complex structures, a strong \(KT\) metric compatible with \(J_{1,1}\) and for any \(t\neq s\neq 1\) there are no strong \(KT\) metrics compatible with \(J_{t,s}\).
More generally, on a nilmanifold \((M,J)\), \(\dim_CM=3\), the condition strong \(KT\) is not stable under small deformations of \(J\). On the analogy of the Kähler case, the authors prove that the blow-up of a strong \(KT\) manifold at a point has a strong \(KT\) metric. An analogous result holds considering the blow-up \(\widetilde M_Y\) of \(M\), \(Y\) being a compact complex submanifold of \(M\). Moreover, given a point \(p\) in a complex manifold \(M\), \(\dim_CM\geq 2\), if \(M\setminus\{p\}\) admits a strong \(KT\) metric, then \(M\) admits a strong \(KT\) metric, also. In order to state the existence of non compact simply-connected strong \(KT\) manifolds, one can consider resolutions of complex orbifolds. Firstly, the authors prove the existence of a strong \(KT\) resolution of any complex orbifold endowed with a Hermitian strong \(KT\) metric. In particular, starting by the standard torus \(T^6\), a strong \(KT\) non Kähler orbifold of \(T^6\) by a suitable action of a finite group is constructed and a simply-connected strong \(KT\) resolution for this orbifold is then obtained.
Finally, in complex dimension four, one obtains strong \(KT\) resolutions on the complex orbifold constructed considering an action of a suitable finite group on a product of two Kodaira-Thurston surfaces and on a product of a Kodaira-Thurston surface with the torus \(T^4\).

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
22E25 Nilpotent and solvable Lie groups

References:

[1] Alessandrini, L.; Bassanelli, G., Plurisubharmonic currents and their extension across analytic subsets, Forum Math., 5, 291-316 (1993) · Zbl 0784.32014
[2] Alexandrov, B.; Ivanov, S., Vanishing theorems on Hermitian manifolds, Differential Geom. Appl., 14, 251-265 (2001) · Zbl 0986.53025
[3] Apostolov, V.; Gualtieri, M., Generalized Kähler manifolds with split tangent bundle, Comm. Math. Phys., 271, 561-575 (2007) · Zbl 1135.53018
[4] Bassanelli, G., A cut-off theorem for plurisubharmonic currents, Forum Math., 6, 567-595 (1994) · Zbl 0808.32010
[5] Benson, C.; Gordon, C. S., Kähler and symplectic structures on nilmanifolds, Topology, 27, 513-518 (1988) · Zbl 0672.53036
[6] Berger, M.; Lascoux, A., Varietés Kählériennes compactes, Lecture Notes in Math., vol. 154 (1970), Springer: Springer New York · Zbl 0205.51702
[7] Bismut, J. M., A local index theorem of non-Kähler manifolds, Math. Ann., 284, 681-699 (1989) · Zbl 0666.58042
[8] Blanchard, A., Sur les variétés analytiques complexe, Ann. Sci. École Norm. Sup., 73, 157-202 (1956) · Zbl 0073.37503
[9] Cavalcanti, G. R.; Fernández, M.; Muñoz, V., Symplectic resolutions, Lefschetz property and formality, Adv. Math., 218, 576-599 (2008) · Zbl 1142.53070
[10] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D., Real homotopy theory of Kähler manifolds, Invent. Math., 29, 245-274 (1975) · Zbl 0312.55011
[11] Demailly, J. P., Complex analytic and differential geometry
[12] Egidi, N., Special metrics on compact complex manifolds, Differential Geom. Appl., 14, 217-234 (2001) · Zbl 0981.32014
[13] Fernández, M.; Muñoz, V., An 8-dimensional non-formal simply-connected symplectic manifold, Ann. of Math., 167, 1045-1054 (2008) · Zbl 1173.57012
[14] Fino, A.; Grantcharov, G., Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math., 189, 439-450 (2004) · Zbl 1114.53043
[15] Fino, A.; Parton, M.; Salamon, S., Families of strong KT structures in six dimensions, Comment. Math. Helv., 79, 317-340 (2004) · Zbl 1062.53062
[16] Fino, A.; Tomassini, A., Non-Kähler solvmanifolds with generalized Kähler structure, J. Symplectic Geom., in press · Zbl 1203.53070
[17] Gates, S. J.; Hull, C. M.; Roček, M., Twisted multiplets and new supersymmetric nonlinear sigma models, Nuclear Phys. B, 248, 157-186 (1984)
[18] Gauduchon, P., La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann., 267, 8, 495-518 (1984) · Zbl 0523.53059
[19] Gauduchon, P., Hermitian connnections and Dirac operators, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 11, Suppl., 257-288 (1997) · Zbl 0876.53015
[20] Gualtieri, M., Generalized complex geometry, Ph.D. thesis, University of Oxford, 2003
[21] Harvey, R.; Lawson, J. B., An intrinsic characterization of Kähler manifolds, Invent. Math., 74, 169-198 (1983) · Zbl 0553.32008
[22] Hasegawa, K., Minimal models of nilmanifolds, Proc. Amer. Math. Soc., 106, 65-71 (1989) · Zbl 0691.53040
[23] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. of Math. (2). Ann. of Math. (2), Ann. of Math. (2), 79, 205-326 (1964) · Zbl 0122.38603
[24] Hitchin, N. J., Instantons and generalized Kähler geometry, Comm. Math. Phys., 265, 131-164 (2006) · Zbl 1110.53056
[25] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Grundlehren Math. Wiss., vol. 256 (1983), Springer: Springer Berlin · Zbl 0521.35001
[26] Joyce, D. D., Compact Manifolds with Special Holonomy, Oxford Math. Monogr. (2000), Oxford Univ. Press · Zbl 1027.53052
[27] Kodaira, K., On the structure of compact complex analytic surfaces II, Amer. J. Math., 88, 682-721 (1966) · Zbl 0193.37701
[28] Kodaira, K.; Spencer, D. C., On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2), 71, 43-76 (1960) · Zbl 0128.16902
[29] Lauret, J., A canonical compatible metric for geometric structures on nilmanifolds, Ann. Global Anal. Geom., 30, 107-138 (2006) · Zbl 1102.53021
[30] Miyaoka, Y., Extension theorems for Kähler metrics, Proc. Japan Acad., 50, 407-410 (1974) · Zbl 0354.32010
[31] Nomizu, K., On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2), 59, 531-538 (1954) · Zbl 0058.02202
[32] Satake, I., On a generalization of the notion of manifold, Proc. Natl. Acad. Sci. USA, 42, 359-363 (1957) · Zbl 0074.18103
[33] Siu, Y.-T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27, 53-156 (1974) · Zbl 0289.32003
[34] Spindel, Ph.; Sevrin, A.; Troost, W.; Van Proyen, A., Complex structures on parallelised group manifolds and supersymmetric \(σ\)-models, Phys. Lett. B, 206, 71-74 (1988)
[35] Strominger, A., Superstrings with torsion, Nuclear Phys. B, 274, 253-284 (1986)
[36] Sullivan, D., Differential forms and the topology of manifolds, (Manifolds, Proc. Internat. Conf.. Manifolds, Proc. Internat. Conf., Tokyo, 1973 (1975), Univ. Tokyo Press: Univ. Tokyo Press Tokyo), 37-49 · Zbl 0319.58005
[37] Ugarte, L., Hermitian structures on six-dimensional nilmanifolds, Transform. Groups, 12, 175-202 (2007) · Zbl 1129.53052
[38] Varouchas, J., Propriétés cohomologiques d’une classe de variétés analytiques complexes compactes, (Sem. d’Analyses Lelong-Dolbeault-Skoda, 1983-1984. Sem. d’Analyses Lelong-Dolbeault-Skoda, 1983-1984, Lecture Notes in Math., vol. 1198 (1985), Springer: Springer Berlin), 233-243 · Zbl 0591.32032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.