×

Boundary value problems for second-order nonlinear difference equations with discrete \(\phi \)-Laplacian and singular \(\phi \). (English) Zbl 1161.39003

The authors study the existence and multiplicity of solutions for boundary value problems of the type \[ \nabla [\phi (\Delta x_k)]+f_k(x_k, \Delta x_k)=0\quad (2\leq k\leq n-1),\qquad l({\mathbf x}, \Delta {\mathbf x})=0, \tag{1} \] where \(\phi: (-a, a)\to {\mathbb R}\) denotes an increasing homeomorphism such that \(\phi(0)=0\) and \(0<a<\infty\), \(l({\mathbf x}, \Delta {\mathbf x})=0\) denotes the Dirichlet, periodic, or Neumann boundary conditions and \(f_k (2\leq k \leq n-1)\) are continuous functions.
Firstly, the authors study forced equations with discrete \(\phi\)-Laplacian and singular \(\phi\) for the three boundary conditions and give fixed point reformations for (1). Secondly, they prove that the Dirichlet problem is always solvable. This is done using a fixed point reduction and Brouwer degree theory. For the other boundary conditions, the authors prove existence when the right hand member \(f=(f_2, f_3, \dots, f_{n-1})\) only satisfies some sign conditions. They also extend the method of upper and lower solutions to this type of problem for periodic and Neumann conditions. Finally, they prove an Ambrosetti-Prodi type multiplicity result and give Lazer-Solimini type results.

MSC:

39A11 Stability of difference equations (MSC2000)
47H11 Degree theory for nonlinear operators
39A12 Discrete version of topics in analysis
39A10 Additive difference equations
34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] Agarwal R.P., Mathematics and its Applications 404 (1997)
[2] Bereanu C., Math. Bohem. 131 pp 145– (2006)
[3] Mawhin J., J. Difference Equ. Appl. 12 pp 677– (2006) · Zbl 1103.39003 · doi:10.1080/10236190600654689
[4] Mawhin J., J. Differ. Equations 243 pp 536– (2007) · Zbl 1148.34013 · doi:10.1016/j.jde.2007.05.014
[5] DOI: 10.1016/j.jmaa.2006.07.104 · Zbl 1127.39006 · doi:10.1016/j.jmaa.2006.07.104
[6] Cabada A., J. Math. Anal. Appl. 267 pp 501– (2002) · Zbl 0995.39003 · doi:10.1006/jmaa.2001.7783
[7] Deimling K., Nonlinear Functional Analysis (1985) · Zbl 0559.47040
[8] Massabó I., J. Funct. Anal. 59 pp 151– (1984) · Zbl 0562.47048 · doi:10.1016/0022-1236(84)90069-7
[9] Mawhin J., Commun. Contemp. Math. 2 pp 87– (2000)
[10] DOI: 10.1016/0022-0396(84)90180-3 · Zbl 0557.34036 · doi:10.1016/0022-0396(84)90180-3
[11] Rachunková I., Fixed Point Theor. 6 pp 99– (2005)
[12] Zhuang W., Comput. Math. Appl. 32 pp 41– (1996) · Zbl 0872.39005 · doi:10.1016/S0898-1221(96)00206-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.