×

Some extremal problems for vector bundles. (English. Russian original) Zbl 1152.52004

St. Petersbg. Math. J. 19, No. 2, 261-277 (2008); translation from Algebra Anal. 19, No. 2, 131-155 (2007).
Let \(\gamma^n_k\) be the tautological bundle over the Grassmannian of \(k\)-dimensional linear subspaces of \({\mathbb R}^n\). A field of convex bodies (f.c.b.) in \(\gamma^n_k\) associates with each fiber of the bundle a \(k\)-dimensional convex body in the fiber that depends continuously on the fiber. (Examples are provided by the \(k\)-dimensional planar sections of a convex body \(K\subset {\mathbb R}^n\) through a fixed interior point, or by the orthogonal projections of \(K\) to the \(k\)-dimensional subspaces.)
This paper collects numerous examples, often deduced from earlier results of the author, of the existence of convex bodies in every f.c.b. that have qualitatively better properties than general \(k\)-dimensional convex bodies. Typical examples: Every f.c.b. in \(\gamma^3_2\) contains a convex body \(K\) such that in its fiber there are homothetic ellipses \(E_1,E_2\) with the same center and with dilatation factor \(\sqrt{2}\) such that \(E_1\subset K\subset E_2\) (for comparison: dilatation factor \(2\) for general \(K\)). Every f.c.b. in \(\gamma^3_2\) contains a convex body \(K\) that admits a lattice packing in the plane with density at least \(3/4\) (for comparison: density at least \(2/3\) for general \(K\)). The topics treated in this spirit comprise symmetry measures, mass partitions, lengths of unit circles in normed planes, universal covers, Jung’s theorem, and others. Further results concern polytopes, for example: Every f.c.b. in \(\gamma^n_k\) consisting of polytopes contains a polytope with at least \(n-k+2\) facets (vertices).

MSC:

52A99 General convexity
52B99 Polytopes and polyhedra
55R25 Sphere bundles and vector bundles in algebraic topology
Full Text: DOI

References:

[1] V. V. Makeev, On some combinatorial geometry problems for vector bundles, Algebra i Analiz 14 (2002), no. 6, 169 – 191 (Russian); English transl., St. Petersburg Math. J. 14 (2003), no. 6, 1017 – 1032. · Zbl 1037.52010
[2] Branko Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233 – 270. Branko Grünbaum, Borsuk’s problem and related questions, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 271 – 284.
[3] V. V. Makeev, Plane sections of convex bodies, and universal fibrations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), no. Geom. i Topol. 7, 219 – 233, 302 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 119 (2004), no. 2, 249 – 256. · Zbl 1074.52502 · doi:10.1023/B:JOTH.0000008766.10742.d5
[4] István Fáry, Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France 78 (1950), 152 – 161 (French). · Zbl 0039.18202
[5] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). · Zbl 0052.18401
[6] A. S. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc. 23 (1948), 237 – 240. · Zbl 0035.38402 · doi:10.1112/jlms/s1-23.3.237
[7] L. G. Šnirel\(^{\prime}\)man, On certain geometrical properties of closed curves, Uspehi Matem. Nauk 10 (1944), 34 – 44 (Russian).
[8] V. V. Makeev, The Knaster problem and almost spherical sections, Mat. Sb. 180 (1989), no. 3, 424 – 431 (Russian); English transl., Math. USSR-Sb. 66 (1990), no. 2, 431 – 438. · Zbl 0684.52002
[9] V. V. Makeev, On the approximation of two-dimensional sections of convex bodies by disks and ellipses, Algebra i Analiz 16 (2004), no. 6, 162 – 171 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 6, 1043 – 1049.
[10] V. V. Makeev, Affine-inscribed and affine-circumscribed polygons and polyhedra, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 231 (1995), no. Issled. po Topol. 8, 286 – 298, 327 – 328 (1996) (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 91 (1998), no. 6, 3518 – 3525. · Zbl 0908.52002 · doi:10.1007/BF02434930
[11] Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123 – 160.
[12] V. V. Makeev, On some geometric properties of three-dimensional convex bodies, Algebra i Analiz 14 (2002), no. 5, 96 – 109 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 5, 781 – 790. · Zbl 1044.52002
[13] V. V. Makeev, On the approximation of a three-dimensional convex body by cylinders, Algebra i Analiz 17 (2005), no. 2, 133 – 144 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 2, 315 – 323.
[14] R. C. Buck and Ellen F. Buck, Equipartition of convex sets, Math. Mag. 22 (1949), 195 – 198. · doi:10.2307/3029182
[15] V. V. Makeev, Some properties of continuous mappings of spheres and problems in combinatorial geometry, Geometric questions in the theory of functions and sets (Russian), Kalinin. Gos. Univ., Kalinin, 1986, pp. 75 – 85 (Russian). · Zbl 0968.52500
[16] Yu. G. Rešetnyak, An extremal problem from the theory of convex curves, Uspehi Matem. Nauk (N.S.) 8 (1953), no. 6(58), 125 – 126 (Russian).
[17] Detlef Laugwitz, Konvexe Mittelpunktsbereiche und normierte Räume, Math. Z. 61 (1954), 235 – 244 (German). · Zbl 0057.14403 · doi:10.1007/BF01181345
[18] V. V. Makeev, On some geometric properties of convex bodies. II, Algebra i Analiz 15 (2003), no. 6, 74 – 85 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 6, 867 – 874.
[19] F. J. Dyson, Continuous functions defined on spheres, Ann. of Math. (2) 54 (1951), 534 – 536. · Zbl 0045.02901 · doi:10.2307/1969487
[20] J. Pal, Über ein elementares Variationsproblem, Danske Vid. Selsk Mat.-Fys. Medd. 3 (1920), no. 2, 35 p. · JFM 47.0684.01
[21] V. V. Makeev, Universal coverings. I, Ukrain. Geom. Sb. 24 (1981), 70 – 79, iii (Russian). · Zbl 0474.52008
[22] David Gale, On inscribing \?-dimensional sets in a regular \?-simplex, Proc. Amer. Math. Soc. 4 (1953), 222 – 225. · Zbl 0051.13403
[23] V. V. Makeev, The asphericity of the shadows of a convex body, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 329 (2005), no. Geom. i Topol. 9, 67 – 78, 196 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 4, 535 – 541. · Zbl 1151.52302 · doi:10.1007/s10958-007-0434-5
[24] Edward Fadell and Sufian Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynam. Systems 8* (1988), no. Charles Conley Memorial Issue, 73 – 85. · Zbl 0657.55002 · doi:10.1017/S0143385700009342
[25] Rade T. Živaljević and Siniša T. Vrećica, An extension of the ham sandwich theorem, Bull. London Math. Soc. 22 (1990), no. 2, 183 – 186. · Zbl 0709.60011 · doi:10.1112/blms/22.2.183
[26] V. L. Dol\(^{\prime}\)nikov, Transversals of families of sets in \?\(^{n}\) and a relationship between Helly and Borsuk theorems, Mat. Sb. 184 (1993), no. 5, 111 – 132 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 79 (1994), no. 1, 93 – 107. · Zbl 0818.52006 · doi:10.1070/SM1994v079n01ABEH003491
[27] Fred Cohen and Ewing L. Lusk, Configuration-like spaces and the Borsuk-Ulam theorem, Proc. Amer. Math. Soc. 56 (1976), 313 – 317. · Zbl 0326.55002
[28] A. I. Shcherba, On estimate of the perimeter of a norming figure in the Minkowski plane, 5 Internat. Conf. on Geometry and Topology in Memory A. V. Pogorelov (Cherkassy, 2003): Thesis. (Russian) · Zbl 1142.52011
[29] -, On estimate of the perimeter of a unit disk in the Minkowski plane, Trudy Rubtsov. Industr. Inst. Vyp. 12 (2003), 96-107. (Russian)
[30] V. V. Makeev, An upper bound for the perimeter of a nonsymmetric unit disk in the Minkowski plane, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 299 (2003), no. Geom. i Topol. 8, 262 – 266, 331 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 131 (2005), no. 1, 5406 – 5408. · Zbl 1145.52302 · doi:10.1007/s10958-005-0414-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.