×

Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. (English) Zbl 1147.90013

Summary: We present a new method, called UTA\(^{\text{GMS}}\), for multiple criteria ranking of alternatives from set \(A\) using a set of additive value functions which result from an ordinal regression. The preference information provided by the decision maker is a set of pairwise comparisons on a subset of alternatives \(A^R \subseteq A\), called reference alternatives. The preference model built via ordinal regression is the set of all additive value functions compatible with the preference information. Using this model, one can define two relations in the set \(A\): the necessary weak preference relation which holds for any two alternatives \(a, b\) from set \(A\) if and only if for all compatible value functions \(a\) is preferred to \(b\), and the possible weak preference relation which holds for this pair if and only if for at least one compatible value function \(a\) is preferred to \(b\). These relations establish a necessary and a possible ranking of alternatives from \(A\), being, respectively, a partial preorder and a strongly complete relation. The UTA\(^{\text{GMS}}\) method is intended to be used interactively, with an increasing subset \(A^R\) and a progressive statement of pairwise comparisons. When no preference information is provided, the necessary weak preference relation is a weak dominance relation, and the possible weak preference relation is a complete relation. Every new pairwise comparison of reference alternatives, for which the dominance relation does not hold, is enriching the necessary relation and it is impoverishing the possible relation, so that they converge with the growth of the preference information. Distinguishing necessary and possible consequences of preference information on the complete set of actions, UTA\(^{\text{GMS}}\) answers questions of robustness analysis. Moreover, the method can support the decision maker when his/her preference statements cannot be represented in terms of an additive value function. The method is illustrated by an example solved using the UTA\(^{\text{GMS}}\) software. Some extensions of the method are also presented.

MSC:

90B50 Management decision making, including multiple objectives

References:

[1] Bana e. Costa, C. A.; Vansnick, J. C., MACBETH - an interactive path towards the construction of cardinal value functions, International Transactions in Operational Research, 1, 489-500 (1994) · Zbl 0857.90004
[2] Barron, F. H., Selecting a best multiattribute alternative with partial information about attribute weights, Acta Psychologica, 80, 91-103 (1992)
[3] Belton, V.; Stewart, T., Multiple Criteria Decision Analysis: An integrated approach (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[4] J.M. Devaud, G. Groussaud, E. Jacquet-Lagreze, UTADIS: Une méthode de construction de fonctions d’utilité additives rendant compte de jugements globaux. In: Proceedings of the European working group on MCDA, Bochum, Germany, 1980.; J.M. Devaud, G. Groussaud, E. Jacquet-Lagreze, UTADIS: Une méthode de construction de fonctions d’utilité additives rendant compte de jugements globaux. In: Proceedings of the European working group on MCDA, Bochum, Germany, 1980.
[5] Dias, L. C.; Clímaco, J. N., Additive aggregation with variable interdependent parameters: The VIP analysis software, Journal of the Operational Research Society, 51, 1070-1082 (2000) · Zbl 1107.90368
[6] Fodor, J.; Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[7] Greco, S.; Matarazzo, B.; Slowinski, R., The use of rough sets and fuzzy sets in MCDM, (Gal, T.; Stewart, T.; Hanne, T., Advances in MCDM Models, Algorithms, Theory, and Applications (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 14.1-14.59 · Zbl 0948.90078
[8] Greco, S.; Matarazzo, B.; Slowinski, R., Rough sets theory for multicriteria decision analysis, European Journal of Operational Research, 129, 1-47 (2001) · Zbl 1008.91016
[9] Greco, S.; Matarazzo, B.; Slowinski, R., Decision rule approach, (Figueira, J.; Greco, S.; Ehrgott, M., Multiple Criteria Decision Analysis, State of the Art Surveys (2005), Springer: Springer New York), 507-561, (chapter 13) · Zbl 1072.90534
[10] Jacquet-Lagrèze, E.; Siskos, Y., Assessing a set of additive utility functions for multicriteria decision making: The UTA method, European Journal of Operational Research, 10, 151-164 (1982) · Zbl 0481.90078
[11] Keeney, R. L.; Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs (1976), J. Wiley: J. Wiley New York · Zbl 0488.90001
[12] Kirkwood, C. W.; Sarin, R. K., Ranking with partial information: A method and an application, Operations Research, 33, 1, 38-48 (1985) · Zbl 0569.90052
[13] Kiss, L.; Martel, J. M.; Nadeau, R., ELECCALC - an interactive software for modelling the decision maker’s preferences, Decision Support Systems, 12, 4-5, 757-777 (1994)
[14] Koksalan, M.; Taner, V., An approach for finding the most preferred alternative in the presence of multiple criteria, European Journal of Operational Research, 60, 1, 53-60 (1992) · Zbl 0766.90047
[15] Koksalan, M.; Ulu, C., An interactive approach for placing alternatives in preference classes, European Journal of Operational Research, 144, 429-439 (2003) · Zbl 1028.90524
[16] Krantz, D.; Luce, D.; Suppes, P.; Tversky, A., Foundations of measurement: Additive and Polynomial Representations, vol. 1 (1971), Academic Press: Academic Press New York · Zbl 0232.02040
[17] Lahdelma, R.; Hokkanen, J.; Salminen, P., SMAA - stochastic multiobjective acceptability analysis, European Journal of Operational Research, 106, 137-143 (1998)
[18] Lee, K. S.; Park, K. S.; Kim, S. H., Dominance, potential optimality, imprecise information, and hierarchical structure in multi-criteria analysis, Computers and Operations Research, 29, 1267-1281 (2002) · Zbl 0994.90094
[19] March, J. G., Bounded rationality, ambiguity and the engineering of choice, Bell Journal of Economics, 9, 587-608 (1978)
[20] (Michalski, R. S.; Bratko, I.; Kubat, M., Machine Learning and Datamining - Methods and Applications (1998), J. Wiley: J. Wiley New York)
[21] Mousseau, V.; Figueira, J.; Dias, L. C.; Gomes da Silva, C.; Clı´maco, J. N., Resolving inconsistencies among constraints on the parameters of an MCDA model, European Journal of Operational Research, 147, 1, 72-93 (2003) · Zbl 1011.90530
[22] Mousseau, V.; Slowinski, R., Inferring an ELECTRE TRI model from assignment examples, Journal of Global Optimization, 12, 2, 157-174 (1998) · Zbl 0904.90093
[23] Pekelman, D.; Sen, S. K., Mathematical programming models for the determination of attribute weights, Management Science, 20, 8, 1217-1229 (1974) · Zbl 0303.90006
[24] Roy, B., Multicriteria Methodology for Decision Aiding (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0893.90108
[25] B. Roy, D. Bouyssou, Aide Multicritère à la Décision: Méthodes et Cas, Economica, Paris, 1993.; B. Roy, D. Bouyssou, Aide Multicritère à la Décision: Méthodes et Cas, Economica, Paris, 1993. · Zbl 0925.90230
[26] Saaty, T. L., The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making, (Figueira, J.; Greco, S.; Ehrgott, M., Multiple Criteria Decision Analysis: State of the Art Surveys (2005), Springer: Springer Berlin), 345-408, (chapter 9) · Zbl 1072.90019
[27] Salo, A. A.; Hamalainen, R. P., Preference ratio in multiattribute evaluation (PRIME) - elicitation and decision procedures under incomplete information, IEEE Transactions on Systems, Man and Cybertnetics: Part A, 31, 6, 533-545 (2001)
[28] Siskos, Y., A way to deal with fuzzy preferences in multicriteria decision problems, European Journal of Operational Research, 10, 3, 314-324 (1982) · Zbl 0481.90051
[29] Siskos, Y.; Grigoroudis, E.; Matsatsinis, N. F., UTA Methods, (Figueira, J.; Greco, S.; Ehrgott, M., State of the Art in Multiple Criteria Decision Analysis (2005), Springer: Springer Berlin), 297-343, (chapter 8) · Zbl 1072.90547
[30] Srinivasan, V.; Shocker, A. D., Estimating the weights for multiple attributes in a composite criterion using pairwise judgments, Psychometrika, 38, 4, 473-493 (1973) · Zbl 0281.62075
[31] Wakker, P., Additive Representations of Preferences, A New Foundation of Decision Analysis (1989), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0668.90001
[32] Weber, M., A method of multiattribute decision making with incomplete information, Management Science, 31, 11, 1365-1371 (1985) · Zbl 0594.90046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.