×

Homological integral of Hopf algebras. (English) Zbl 1145.16022

The authors introduce the notion of homological integral on Hopf algebras, the underlying algebras of which are Artin-Schelter Gorenstein, and use it to study regular Hopf algebras.
Recall that an integral in a Hopf algebra \(H\) can be considered as a non-zero element of \(\operatorname{Hom}_H(k,H)\). \(H\), as an algebra, is called Artin-Schelter Gorenstein if it has finite (left and right) injective dimension \(d\) and satisfies the following conditions (for left and right \(H\)-modules): \(\text{Ext}_H^d(k,H)\cong k\), \(\text{Ext}^i_H(k,H)=0\), for all \(i\neq d\). Let \(H\) be such a Hopf algebra. The space \(\text{Ext}^d_H(k,H)\) is called the left or right homological integral of \(H\) and denoted by \(\int^l\) or \(\int^r\), depending on whether \(k\) and \(H\) are considered as left or right \(H\)-modules.
In the first part of the work the authors show that a Noetherian, finitely generated, PI Hopf algebra \(H\) has finite global dimension iff the following two conditions are satisfied. Condition 1: The map \(\text{Ext}^d_H(\int^r,\varepsilon)\colon\text{Ext}^d_H(\int^r,H)\to\text{Ext}^d_H(\int^r,k)\) is an isomorphism, where \(\int^r\) denotes the right homological integral of \(H\). Condition 2: For every simple left \(H\)-module \(T\not\cong\int^r\), \(\text{Ext}^d_H(T,k)=0\).
The second part of the work is devoted to the study of Hopf algebras of Gelfand-Kirillov dimension 1 and of finite global dimension. It is shown in particular that if \(H\) is prime and \(\int^r=\int^l\) then it is commutative, if moreover \(k\) is algebraically closed then \(H\) is either \(k[x]\) or \(k[x^{\pm 1}]\).

MSC:

16T05 Hopf algebras and their applications
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
16P90 Growth rate, Gelfand-Kirillov dimension

References:

[1] K. Ajitabh, S. P. Smith, and J. J. Zhang, Auslander-Gorenstein rings, Comm. Algebra 26 (1998), no. 7, 2159 – 2180. · Zbl 0910.16005 · doi:10.1080/00927879808826267
[2] D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, Cambridge, 1993. · Zbl 0864.13001
[3] Amiram Braun, An additivity principle for p.i. rings, J. Algebra 96 (1985), no. 2, 433 – 441. · Zbl 0576.16018 · doi:10.1016/0021-8693(85)90020-1
[4] Amiram Braun and Robert B. Warfield Jr., Symmetry and localization in Noetherian prime PI rings, J. Algebra 118 (1988), no. 2, 322 – 335. · Zbl 0658.16008 · doi:10.1016/0021-8693(88)90024-5
[5] Kenneth A. Brown, Representation theory of Noetherian Hopf algebras satisfying a polynomial identity, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997) Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI, 1998, pp. 49 – 79. · Zbl 0926.16028 · doi:10.1090/conm/229/03310
[6] K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras of irreducible modules and maximal dimension, J. Algebra 198 (1997), no. 1, 240 – 265. · Zbl 0892.16022 · doi:10.1006/jabr.1997.7109
[7] Paul Moritz Cohn, Algebra. Vol. 2, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I.
[8] K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, 2nd ed., London Mathematical Society Student Texts, vol. 61, Cambridge University Press, Cambridge, 2004. · Zbl 1101.16001
[9] Cornelius Greither and Bodo Pareigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987), no. 1, 239 – 258. · Zbl 0615.12026 · doi:10.1016/0021-8693(87)90029-9
[10] Wilfried Imrich and Norbert Seifter, A bound for groups of linear growth, Arch. Math. (Basel) 48 (1987), no. 2, 100 – 104. · Zbl 0584.20025 · doi:10.1007/BF01189278
[11] Richard G. Larson and David E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), no. 2, 267 – 289. · Zbl 0649.16005 · doi:10.1016/0021-8693(88)90107-X
[12] Richard G. Larson and David E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 110 (1988), no. 1, 187 – 195. · Zbl 0637.16006 · doi:10.2307/2374545
[13] Richard Gustavus Larson and Moss Eisenberg Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75 – 94. · Zbl 0179.05803 · doi:10.2307/2373270
[14] G.-X. Liu, On Noetherian affine prime regular Hopf algebras of Gelfand-Kirillov dimension \( 1\), Proc. Amer. Math. Soc. (to appear). · Zbl 1175.16025
[15] Maria E. Lorenz and Martin Lorenz, On crossed products of Hopf algebras, Proc. Amer. Math. Soc. 123 (1995), no. 1, 33 – 38. · Zbl 0826.16037
[16] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. · Zbl 0644.16008
[17] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. · Zbl 0793.16029
[18] Bodo Pareigis, Forms of Hopf algebras and Galois theory, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 75 – 93. · Zbl 0724.16019
[19] Donald S. Passman, The algebraic structure of group rings, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Reprint of the 1977 original. · Zbl 0654.16001
[20] Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. · Zbl 0441.18018
[21] Hans-Jürgen Schneider, Some remarks on exact sequences of quantum groups, Comm. Algebra 21 (1993), no. 9, 3337 – 3357. · Zbl 0801.16040 · doi:10.1080/00927879308824733
[22] L. W. Small, J. T. Stafford, and R. B. Warfield Jr., Affine algebras of Gel\(^{\prime}\)fand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 407 – 414. · Zbl 0561.16005 · doi:10.1017/S0305004100062976
[23] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[24] John Stallings, Group theory and three-dimensional manifolds, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969; Yale Mathematical Monographs, 4. · Zbl 0241.57001
[25] J. T. Stafford and J. J. Zhang, Homological properties of (graded) Noetherian \?\? rings, J. Algebra 168 (1994), no. 3, 988 – 1026. · Zbl 0812.16046 · doi:10.1006/jabr.1994.1267
[26] Earl J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631 – 2633. · Zbl 0222.16012
[27] A. J. Wilkie and L. van den Dries, An effective bound for groups of linear growth, Arch. Math. (Basel) 42 (1984), no. 5, 391 – 396. · Zbl 0567.20016 · doi:10.1007/BF01190686
[28] Q.-S. Wu and J. J. Zhang, Noetherian PI Hopf algebras are Gorenstein, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1043 – 1066. · Zbl 1019.16028
[29] Q.-S. Wu and J. J. Zhang, Regularity of involutory PI Hopf algebras, J. Algebra 256 (2002), no. 2, 599 – 610. · Zbl 1065.16036 · doi:10.1016/S0021-8693(02)00142-4
[30] Q.-S. Wu and J. J. Zhang, Homological identities for noncommutative rings, J. Algebra 242 (2001), no. 2, 516 – 535. · Zbl 0993.16006 · doi:10.1006/jabr.2001.8817
[31] Amnon Yekutieli and James J. Zhang, Residue complexes over noncommutative rings, J. Algebra 259 (2003), no. 2, 451 – 493. · Zbl 1035.16004 · doi:10.1016/S0021-8693(02)00579-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.