×

Extremely primitive groups. (English) Zbl 1141.20003

A primitive permutation group is called extremely primitive if a point stabiliser acts primitively on each of its orbits. Examples include cyclic groups of prime order and 2-primitive permutation groups (i.e. a point stabiliser is primitive on the remaining points), a classification of those is known. The authors aim at classifying extremely primitive groups.
The main result states that an extremely primitive group is either of affine type or almost simple. The proof uses O’Nan-Scott Theorem.
Then the authors analyse the affine case in detail. They classify the groups into 3 families: soluble groups (3 families), insoluble 2-transitive groups (2 families and 4 extra examples), and insoluble not 2-transitive groups. For that last case, they find all examples up to a finite number of possibilities and conjecture they found them all. This study relies on the classification of the finite simple groups.

MSC:

20B15 Primitive groups
20B10 Characterization theorems for permutation groups
Full Text: DOI

References:

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), 469-514. · Zbl 0537.20023 · doi:10.1007/BF01388470
[2] P. J. Cameron, Permutation Groups . London Math. Soc. Stud. Texts 45, Cambridge Uni- versity Press, Cambridge 1999. · Zbl 0922.20003
[3] L. E. Dickson, Linear groups with an exposition of the Galois field theory . B.G. Teubner, Leipzig 1901; Dover, New York 1958. · Zbl 0082.24901
[4] J. D. Dixon and B. Mortimer, Permutation groups . Grad. Texts in Math. 163, Springer- Verlag, New York 1996. · Zbl 0951.20001
[5] W. Feit and G. M. Seitz, On finite rational groups and related topics. Illinois J. Math. 33 (1989), 103-131. · Zbl 0701.20005
[6] The GAP Group, GAP - Groups, algorithms, and programming, Version 4.4.9, 2006.
[7] D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-com- plements. Canad. J. Math. 21 (1969), 335-357. · Zbl 0201.03202 · doi:10.4153/CJM-1969-035-x
[8] R. M. Guralnick, K. Magaard, J. Saxl, and P. H. Tiep, Cross characteristic representa- tions of symplectic and unitary groups. J. Algebra 257 (2002), 291-347. · Zbl 1025.20002 · doi:10.1016/S0021-8693(02)00527-6
[9] J. E. Humphreys, Modular representations of finite groups of Lie type. In Finite Simple Groups II (ed. M. J. Collins), Academic Press, London 1980, 259-290. · Zbl 0472.20015
[10] G. D. James, On the minimal dimensions of irreducible representations of symmet- ric groups. Math. Proc. Cambridge Philos. Soc. 94 (1983), 417-424. · Zbl 0544.20011 · doi:10.1017/S0305004100000803
[11] C. Jansen, The minimal degrees of faithful representations of the sporadic simple groups and their covering groups. LMS J. Comput. Math. 8 (2005), 122-144. · Zbl 1089.20006 · doi:10.1112/S1461157000000930
[12] C. Jansen, K. Lux, R. Parker, and R. Wilson, An atlas of Brauer characters . Clarendon Press, Oxford 1995. · Zbl 0831.20001
[13] P. Kleidman and M. W. Liebeck, The subgroup structure of the finite classical groups . London Math. Soc. Lecture Note Ser. 129, Cambridge University Press, Cambridge 1990. · Zbl 0697.20004
[14] L. G. Kovács, Primitive subgroups of wreath products in product action. Proc. London Math. Soc. (3) 58 (1989), 306-322. · Zbl 0671.20002 · doi:10.1112/plms/s3-58.2.306
[15] V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups. J. Algebra 32 (1974), 418-443. · Zbl 0325.20008 · doi:10.1016/0021-8693(74)90150-1
[16] M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups. Proc. London Math. Soc. (3) 50 (1985), 426-446. · Zbl 0591.20021 · doi:10.1112/plms/s3-50.3.426
[17] M. W. Liebeck, The affine permutation groups of rank three. Proc. London Math. Soc. (3) 54 (1987), 477-516. · Zbl 0621.20001 · doi:10.1112/plms/s3-54.3.477
[18] M. W. Liebeck, B. M. S. Martin, and A. Shalev, On conjugacy classes of maximal sub- groups of finite simple groups, and a related zeta function. Duke Math. J. 128 (2005), 541-557. · Zbl 1103.20010 · doi:10.1215/S0012-7094-04-12834-9
[19] M. W. Liebeck, C. E. Praeger and J. Saxl, On the O’Nan-Scott Theorem for finite primitive permutation groups. J. Austral. Math. Soc. Ser. A 44 (1988), 389-396. · Zbl 0647.20005
[20] M. W. Liebeck and A. Shalev, Maximal subgroups of symmetric groups. J. Combin. Theory Ser. A 75 (1996), 341-352. · Zbl 0866.20003 · doi:10.1006/jcta.1996.0082
[21] F. Lübeck, Small degree representations of finite Chevalley groups in defining character- istic. LMS J. Comput. Math. 4 (2001), 135-169. · Zbl 1053.20008 · doi:10.1112/S1461157000000838
[22] W. A. Manning, Simply transitive primitive groups. Trans. Amer. Math. Soc. 29 (1927), 815-825. · JFM 53.0108.01
[23] D. V. Pasechnik and C. E. Praeger, On transitive permutation groups with primitive sub- constituents. Bull. London Math. Soc. 31 (1999), 257-268. · Zbl 0940.20004 · doi:10.1112/S0024609398005669
[24] D. S. Passman, Solvable 3=2-transitive permutation groups. J. Algebra 7 (1967), 192-207. · Zbl 0244.20005 · doi:10.1016/0021-8693(67)90055-5
[25] D. S. Passman, Exceptional 3=2-transitive permutation groups. Pacific J. Math. 29 (1969), 669-713. · Zbl 0177.03701 · doi:10.2140/pjm.1969.29.669
[26] G. Schlichting, Operationen mit periodischen Stabilisatoren. Arch. Math. 34 (1980), 97-99. · Zbl 0449.20004 · doi:10.1007/BF01224936
[27] G. M. Seitz and A. E. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups, II. J. Algebra 158 (1993), 233-243. · Zbl 0789.20014 · doi:10.1006/jabr.1993.1132
[28] M. Suzuki, On a finite group with a partition. Arch. Math. 12 (1961), 241-254. · Zbl 0107.25902 · doi:10.1007/BF01650557
[29] P. H. Tiep, Low dimensional representations of finite quasisimple groups. In Groups, combinatorics & geometry (Durham, 2001), World Scientific, Singapore 2003, 277-294. · Zbl 1032.20008
[30] H. Wielandt, Finite permutation groups .Academic Press, NewYork 1964. · Zbl 0138.02501
[31] R. A. Wilson, R. A. Parker, J. Bray, and T. Breuer, AtlasRep, a GAP package, version 1.3.
[32] R. A. Wilson et al., ATLAS of finite group representations, version 3. · Zbl 0914.20016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.