×

A rigidity theorem for pre-Lie algebras. (English) Zbl 1134.17001

The starting point of the paper under review is the classical Leray theorem that any graded connected commutative and cocommutative Hopf algebra is a free commutative algebra and a free cocommutative coalgebra and its analogues for unital infinitesimal bialgebras [J.-L. Loday and M. Ronco, J. Reine Angew. Math. 592, 123–155 (2006; Zbl 1096.16019)] and dendriform and codendriform bialgebras [L. Foissy, Bull. Sci. Math. 126, No. 3, 193–239 (2002; Zbl 1013.16026), ibid. 126, No. 4, 249–288 (2002; Zbl 1013.16027)]. These three results are viewed from the operadic point of view: Given the operad \(\mathcal P\) (where \(\mathcal P\) is the commutative, associative or dendriform operad), then any graded connected \(\mathcal P\)-algebra which is also a \(\mathcal P\)-coalgebra equipped with a suitable relation between the algebra and coalgebra structures, is rigid in the sense that it is free as a \(\mathcal P\)-algebra and as a \(\mathcal P\)-coalgebra. In the present paper the author obtains a result of this kind for pre-Lie algebras. The new moment is that the involved costructure is not pre-Lie, but nonassociative permutative. Recall that pre-Lie algebras (or right-symmetric algebras, or Vinberg algebras) with multiplication \(\circ\) satisfy the identity \((x\circ y)\circ z - x\circ (y\circ z)=(x\circ z)\circ y - x\circ (z\circ y)\) and permutative algebras are defined by the identity \((ab)c=(ac)b\). Several years ago F. Chapoton and M. Livernet [Int. Math. Res. Not. 2001, No. 8, 395–408 (2001; Zbl 1053.17001)] described pre-Lie algebras in terms of rooted trees. Now the author establishes that nonassociative permutative algebras can also be described in terms of rooted trees. This allows to prove the main result of the paper:
Any pre-Lie algebra together with a non-associative permutative connected coproduct \(\Delta\) satisfying the compatibility relation \(\Delta(a\circ b)=\Delta(a)\circ b + a\otimes b\) is a free pre-Lie algebra and a free nonassociative permutative coalgebra.
The author also interprets this theorem in terms of cogroups in the category of pre-Lie algebras.

MSC:

17A30 Nonassociative algebras satisfying other identities
17A50 Free nonassociative algebras
18D50 Operads (MSC2010)

References:

[1] Berstein, Israel, On co-groups in the category of graded algebras, Trans. Amer. Math. Soc., 115, 257-269 (1965) · Zbl 0134.42404
[2] Chapoton, Frédéric, Un endofoncteur de la catégorie des opérades, (Dialgebras and Related Operads. Dialgebras and Related Operads, Lecture Notes in Math., vol. 1763 (2001), Springer: Springer Berlin), 105-110 · Zbl 0999.17004
[3] Chapoton, Frédéric; Livernet, Muriel, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices, 8, 395-408 (2001) · Zbl 1053.17001
[4] Connes, Alain; Kreimer, Dirk, Hopf algebras, renormalization and noncomutative geometry, Comm. Math. Phys., 199, 203-242 (1998) · Zbl 0932.16038
[5] Dzhumadil’daev, Askar; Löfwall, Clas, Trees, free right-symmetric algebras, free Novikov algebras and identities, Homology Homotopy Appl., 4, 2, part 1, 165-190 (2002), The Roos Festschrift volume, 1 · Zbl 1029.17001
[6] Foissy, Loïc, Isomorphisme entre l’algèbre de Hopf des fonctions quasi-symétriques libres et une algèbre de Hopf des arbres enracinés décorés plans (2005), Preprint
[7] Fresse, Benoit, Algèbre des descentes et cogroupes dans les algèbres sur une opérade, Bull. Soc. Math. France, 126, 3, 407-433 (1998) · Zbl 0940.18004
[8] Fresse, Benoit, Cogroups in algebras over an operad are free algebras, Comment. Math. Helv., 73, 4, 637-676 (1998) · Zbl 0929.16033
[9] Gerstenhaber, Murray, The cohomology structure of an associative ring, Ann. of Math., 78, 2, 267-288 (1963) · Zbl 0131.27302
[10] Ginzburg, Victor; Kapranov, Mikhail, Koszul duality for operads, Duke Math. J., 76, 1, 203-272 (1994) · Zbl 0855.18006
[11] Guin, Daniel; Oudom, Jean-Michel, On the Lie enveloping algebra of a pre-Lie algebra (2004), Preprint · Zbl 1146.17305
[12] Holtkamp, Ralph, On hopf algebra structures over operads (2004), Preprint
[13] Leray, Jean, Sur la forme des espaces topologiques et sur les points fixes des représentations, J. Math. Pures Appl., 24, 9, 95-167 (1945) · Zbl 0060.40703
[14] Jean-Louis Loday, La renaissance des opérades, Astérisque 237; Jean-Louis Loday, La renaissance des opérades, Astérisque 237
[15] Loday, Jean-Louis; Ronco, María, On the structure of cofree Hopf algebras (2004), Preprint · Zbl 1096.16019
[16] Milnor, John W.; Moore, John C., On the structure of Hopf algebras, Ann. of Math., 81, 2, 211-264 (1965) · Zbl 0163.28202
[17] Marshall Osborn, J., Novikov algebras, Nova J. Algebra Geom., 1, 1, 1-13 (1992) · Zbl 0876.17005
[18] Oudom, Jean-Michel, Théorème de Leray dans la catégorie des algèbres sur une opérade, C. R. Acad. Sci. Paris Sér. I Math., 329, 2, 101-106 (1999) · Zbl 0945.18007
[19] Ronco, María, Primitive elements in a free dendriform algebra, (New trends in Hopf Algebra Theory (La Falda, 1999). New trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math., vol. 267 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 245-263 · Zbl 0974.16035
[20] Vinberg, Èrnest B., The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč., 12, 303-358 (1963) · Zbl 0138.43301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.