×

Doubling measures, monotonicity, and quasiconformality. (English) Zbl 1131.30008

The authors construct quasiconformal mappings in \(n\)-dimensional Euclidean space \({\mathbb R}^n\) by integration of a discontinuous kernel against doubling measures with suitable decay. For example, the authors show that if a doubling measure \(\mu\) in \({\mathbb R}^n\) satisfies the decay condition
\[ \int_{| z| >1} | z| ^{-1}\,d\mu(z)<\infty, \]
then the mapping \(f_\mu\), defined by
\[ f_\mu(x) = {1\over 2}\int_{{\mathbb R}^n}\bigg({{x-z}\over{| x-z| }}+{z\over{| z| }}\bigg)\,d\mu(z), \]
is \(\eta\)-quasisymmetric with \(\eta\) depending only on the doubling constant of \(\mu\). Note that every sense-preserving quasisymmetric mapping \(f: {\mathbb R}^n\to {\mathbb R}^n\), \(n\geq 2\) is quasiconformal and vice versa [P. Tukia and J. Väisälä, Ann. Acad. Sci. Fenn., Ser. A I 5, 97–114 (1980; Zbl 0403.54005)].
A Radon measure \(\mu\) on \({\mathbb R}^n\) is said to be isotropic doubling if there there exists a constant \(A\geq 1\) such that
\[ A^{-1} \leq {{\mu(R_1)}\over{\mu(R_2)}} \leq A \]
whenever \(R_1\) and \(R_2\) are congruent rectangular boxes with nonempty intersection. A mapping \(F\) from a convex domain \(\Omega\subset \mathbb R^n\) into \({\mathbb R}^n\) is called \(\delta\)-monotone for \(\delta \in (0,1]\) if for all \(x,y\in \Omega\)
\[ \langle F(x)-F(y),x-y\rangle \geq \delta | F(x)-F(y)| | x-y| . \]
A nonconstant \(\delta\)-monotone mapping \(f\:\Omega \to {\mathbb R}^n\), \(n\geq 2\) is \(\eta\)-quasisymmetric on a closed ball \(B\) if \(2B\subset \Omega\) with \(\eta\) depending only on \(\delta\) [J. Lond. Math. Soc., II. Ser. 75, No. 2, 391–408 (2007; Zbl 1134.47038)]. The authors prove that for a nonconstant \(\delta\)-monotone mapping \(f:{\mathbb R}^n\to {\mathbb R}^n\), \(n\geq 2\), the weight \(\| Df\| \) is isotropic doubling. Finally, a construction is given for an isotropic doubling measure that is not absolutely continuous with respect to the Lebesgue measure.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
28A75 Length, area, volume, other geometric measure theory
42A55 Lacunary series of trigonometric and other functions; Riesz products
47H05 Monotone operators and generalizations

References:

[1] Aimar H., Forzani L. and Naibo V. (2002). Rectangular differentiation of integrals of Besov functions. Math. Res. Lett. 9(2–3): 173–189 · Zbl 1035.42013
[2] Alberti G. and Ambrosio L. (1999). A geometrical approach to monotone functions in \(\mathbb{R}^n\) . Math. Z. 230(2): 259–316 · Zbl 0934.49025 · doi:10.1007/PL00004691
[3] Beurling A. and Ahlfors L.V. (1956). The boundary correspondence under quasiconformal mappings. Acta Math. 96: 125–142 · Zbl 0072.29602 · doi:10.1007/BF02392360
[4] Bishop, C.J.: An A 1 weight not comparable with any quasiconformal Jacobian. In: Canary, R., Gilman, J., Heinonen, J., Masur, H. (eds.) Proceedings of the 2005 Ahlfors-Bers Colloquium, Contemp. Math. Amer. Math. Soc., Providence (in press) · Zbl 1145.30007
[5] Bonk M., Heinonen J. and Rohde S. (2001). Doubling conformal densities. J. Reine Angew. Math. 541: 117–141 · Zbl 0987.30009 · doi:10.1515/crll.2001.089
[6] Bonk, M., Heinonen, J., Saksman, E.: The quasiconformal Jacobian problem. In: Abikoff, W., Haas, A. (eds.) In the tradition of Ahlfors and Bers, III, Contemp. Math., 355, 77–96, Amer. Math. Soc., Providence (2004) · Zbl 1069.30036
[7] Bonk, M., Heinonen, J., Saksman, E.: Logarithmic potentials, quasiconformal flows, and , preprint (2006) · Zbl 1146.30010
[8] Buckley S.M., Hanson B. and MacManus P. (2001). Doubling for general sets. Math. Scand. 88(2): 229–245 · Zbl 1021.28004
[9] David, G., Semmes, S.: Strong A weights, Sobolev inequalities and quasiconformal mappings. In: Sadosky C. (ed.), Analysis and partial differential equations, 101–111, Lect. Notes Pure Appl. Math. 122, 101–111 (1990) · Zbl 0752.46014
[10] Gehring F.W. (1973). The L p -integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130: 265–277 · Zbl 0258.30021 · doi:10.1007/BF02392268
[11] Gutiérrez C.E. (2001). The Monge-Ampère equation. Birkhäuser, Boston · Zbl 0989.35052
[12] Heinonen J. (2001). Lectures on analysis on metric spaces. Springer, Heidelberg · Zbl 0985.46008
[13] Jerison D.S. and Kenig C.E. (1982). Hardy spaces, A and singular integrals on chord-arc domains. Math. Scand. 50(2): 221–247 · Zbl 0509.30025
[14] Kovalev, L.V.: Quasiconformal geometry of monotone mappings. J. London Math. Soc. (in press) · Zbl 1134.47038
[15] Kovalev L.V. and Maldonado D. (2005). Mappings with convex potentials and the quasiconformal Jacobian problem. Illinois J. Math. 49(4): 1039–1060 · Zbl 1093.30017
[16] Laakso T.J. (2002). Plane with A weighted metric not bi-Lipschitz embeddable to \(\mathbb{R}^n\) . Bull. London Math. Soc. 34(6): 667–676 · Zbl 1029.30014 · doi:10.1112/S0024609302001200
[17] Rohde S. (2001). Quasicircles modulo bilipschitz maps. Rev. Mat. Iberoamericana 17(3): 643–659 · Zbl 1003.30013
[18] Semmes S. (1996). On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A weights. Rev. Mat. Iberoamericana 12(2): 337–410 · Zbl 0858.46017
[19] Sobolevskii P.E. (1957). On equations with operators forming an acute angle. Dokl. Akad. Nauk SSSR (N.S.) 116: 754–757 · Zbl 0081.11802
[20] Staples S.G. (1992). Doubling measures and quasiconformal maps. Comment. Math. Helv. 67(1): 119–128 · Zbl 0780.30016 · doi:10.1007/BF02566491
[21] Stein E.M. (1970). Singular integrals and differentiability properties of functions. Princeton University Press, Princeton · Zbl 0207.13501
[22] Stein E.M. (1993). Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals. Princeton University Press, Princeton · Zbl 0821.42001
[23] Tukia P. (1981). Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 6(1): 89–94 · Zbl 0431.30011
[24] Tukia P. and Väisälä J. (1980). Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1): 97–114 · Zbl 0403.54005
[25] Tyson J.T. and Wu J.-M. (2005). Characterizations of snowflake metric spaces. Ann. Acad. Sci. Fenn. Math. 30(2): 313–336 · Zbl 1125.54014
[26] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., vol 229. Springer, Berlin (1971) · Zbl 0221.30031
[27] Zeidler E. (1990). Nonlinear functional analysis and its applications II/B. Nonlinear monotone operators. Springer, Heidelberg · Zbl 0684.47029
[28] Zygmund A. (2002). Trigonometric Series. Cambridge Univ. Press, Cambridge · Zbl 1084.42003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.