×

A Chebyshev type inequality for fuzzy integrals. (English) Zbl 1129.26021

The classical Chebyshev’s integral inequality \(\int_0^1 fg \,d\mu \geq(\int_0^1 f \,d\mu )(\int_0^1 g \,d\mu)\) for \(f, g: [0,1] \to [0, \infty )\) of the same monotonicity type is shown for the case, when the Lebesgue integral is replaced by the Sugeno integral. As a corollary an analogous result for finite number of fuctions is included.

MSC:

26D15 Inequalities for sums, series and integrals
26E50 Fuzzy real analysis
Full Text: DOI

References:

[1] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis. Tokyo Institute of Technology, 1974.; M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis. Tokyo Institute of Technology, 1974.
[2] Ralescu, D.; Adams, G., The fuzzy integral, J. Math. Anal. Appl., 75, 562-570 (1980) · Zbl 0438.28007
[3] Román-Flores, H.; Flores-Franulič, A.; Bassanezi, R.; Rojas-Medar, M., On the level-continuity of fuzzy integrals, Fuzzy Sets Syst., 80, 339-344 (1996) · Zbl 0872.28013
[4] Román-Flores, H.; Chalco-Cano, Y., H-continuity of fuzzy measures and set defuzzification, Fuzzy Sets Syst., 157, 230-242 (2006) · Zbl 1084.28010
[5] Román-Flores, H.; Chalco-Cano, Y., Sugeno integral and geometric inequalities, Int. J. Uncertain. Fuzz. Knowledge-Based Syst., 15, 1, 1-11 (2007) · Zbl 1118.28012
[6] Wang, Z.; Klir, G., Fuzzy measure theory (1992), Plenum: Plenum New York · Zbl 0812.28010
[7] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, The fuzzy integral for monotone functions, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.07.066.; H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, The fuzzy integral for monotone functions, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.07.066. · Zbl 1116.26024
[8] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, Inform. Sciences, in press, doi:10.1016/j.ins.2007.02.006.; H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, Inform. Sciences, in press, doi:10.1016/j.ins.2007.02.006. · Zbl 1127.28013
[9] Tong, Y. L., Relationship between stochastic inequalities and some classical mathematical inequalities, J. Inequal. Appl., 1, 85-98 (1997) · Zbl 0882.60015
[10] Wagener, A., Chebyshev’s algebraic inequality and comparative statics under uncertainty, Math. Social Sci., 52, 217-221 (2006) · Zbl 1142.60320
[11] Gauchman, H., Some integral inequalities involving Taylor’s remainder II, J. Inequal. Pure Appl. Math., 4, 1 (2003), Art.1 · Zbl 1032.26015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.