×

Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm. (English) Zbl 1126.78010

Summary: A novel continuation method is presented for solving the inverse medium scattering problem of the Helmholtz equation, which is to reconstruct the shape of the inhomogeneous medium from boundary measurements of the scattered field. The boundary data is assumed to be available at multiple frequencies. Initial guesses are chosen from a direct imaging algorithm, multiple signal classification (MUSIC), along with a level set representation at a certain wavenumber, where the Born approximation may not be valid. Each update via recursive linearization on the wavenumbers is obtained by solving one forward and one adjoint problem of the Helmholtz equation.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
Full Text: DOI

References:

[1] Ammari, H.; Kang, H., Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, vol. 1846 (2004), Springer: Springer NY · Zbl 1113.35148
[2] Bao, G.; Liu, J., Numerical solution of inverse problems with multi-experimental limited aperture data, SIAM J. Sci. Comput., 25, 1102-1117 (2003) · Zbl 1048.65058
[3] Bao, G.; Li, P., Inverse medium scattering for three-dimensional time harmonic Maxwell equations, Inverse Probl., 20, L1-L7 (2004) · Zbl 1119.35039
[4] Bao, G.; Li, P., Inverse medium scattering problems for electromagnetic waves, SIAM J. Appl. Math., 65, 1066-2049 (2005) · Zbl 1114.78006
[5] Bao, G.; Li, P., Inverse medium scattering for the Helmholtz equation at fixed frequency, Inverse Probl., 21, 1621-1641 (2005) · Zbl 1086.35120
[6] Bao, G.; Li, P., Inverse medium scattering problems in near-field optics, J. Comput. Math., 25, 3, 252-265 (2007)
[7] Bao, G.; Li, P., Numerical solution of inverse scattering for near-field optics, Opt. Lett., 32, 11, 1465-1467 (2007)
[8] Caselles, V.; Catte, F.; Coll, T.; Dibos, F., A geometric model for active contours in image processing, Numer. Math., 66, 1-31 (1993) · Zbl 0804.68159
[9] Casseles, V.; Kimmel, R.; Sapiro, G., On geodesic active contours, Int. J. Comput. Vis., 22, 61-79 (1997) · Zbl 0894.68131
[10] Chen, Y., Inverse scattering via Heisenberg uncertainty principle, Inverse Probl., 13, 253-282 (1997) · Zbl 0872.35123
[11] Chen, Y., Inverse scattering via skin effect, Inverse Probl., 13, 649-667 (1997) · Zbl 0877.35135
[12] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, (Appl. Math. Sci., vol. 93 (1998), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1266.35121
[13] Dorn, O.; Miller, E.; Rappaport, C., A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets, Inverse Probl., 16, 1119-1156 (2000) · Zbl 0983.35150
[14] Engl, H.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (1996), Kluwer: Kluwer Dordrecht · Zbl 0859.65054
[15] Gruber, F. K.; Marengo, E. A.; Devaney, A. J., Time-reversal imaging with multiple signal classification considering multiple scattering between the targets, J. Acoust. Soc. Am., 115, 3042-3047 (2004)
[16] Ito, K.; Kunisch, K.; Li, Z., Level-set function approach to an inverse interface problem, Inverse Probl., 17, 1225-1242 (2001) · Zbl 0986.35130
[17] Kass, M.; Witkin, A.; Terzopoulos, D., Snakes: active contour models, Int. J. Comput. Vis., 1, 321-331 (1988)
[18] Kress, R.; Rundell, W., Inverse scattering for shape and impedance, Inverse Probl., 17, 1075-1085 (2001) · Zbl 0985.35109
[19] Hassen, F.; Liu, J.; Potthast, R., On source analysis by wave splitting with applications in inverse scattering of multiple obstacles, J. Comput. Math., 25, 3, 266-281 (2007) · Zbl 1142.35533
[20] Hou, S.; Solna, K.; Zhao, H., A direct imaging algorithm for extended targets, Inverse Probl., 22, 1151-1178 (2006) · Zbl 1112.78014
[21] Litman, A.; Lesselier, D.; Santosa, F., Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level set, Inverse Probl., 14, 685-706 (1998) · Zbl 0912.35158
[22] Meyer, P. S.; Capistran, M.; Chen, Y., On the naturally induced sources for obstacle scattering, Commun. Comput. Phys., 1, 6, 974-983 (2006) · Zbl 1114.76063
[23] Natterer, F.; Wübbeling, F., A propagation-backpropagation method for ultrasound tomography, Inverse Probl., 11, 1225-1232 (1995) · Zbl 0839.35146
[24] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[25] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, J. Comput. Phys., 155, 2, 410-438 (1999) · Zbl 0964.76069
[26] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flows, J. Comput. Phys., 119, 146-159 (1994) · Zbl 0808.76077
[27] Tsynkov, S. V.; Turkel, E., A Cartesian perfectly matched layer for the Helmholtz equation, (Tourrette, L.; Halpern, L., Absorbing Boundaries and Layers, Domain Decomposition Methods, Applications to Large Scale Computations (2001), Nova Science Publishers: Nova Science Publishers New York), 279-309 · Zbl 1063.76002
[28] Zhao, H.; Chan, T.; Merriman, B.; Osher, S., A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179-195 (1996) · Zbl 0860.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.