×

New embedded boundary-type quadrature formulas for the simplex. (English) Zbl 1125.65020

Summary: We consider the problem of approximating the integral of a smooth enough function \(f(x, y)\) on the standard simplex \(\Delta_{2} \subset \mathbb{R}^{2}\) by cubature formulas of the following kind:
\[ {\int_{\Delta_{2}} f(x,y) \,dx\,dy =\sum_{\alpha = 1}^3 \sum_{i,j} A_{\alpha ij} \frac{\partial ^{i + j}}{\partial x^{i} \partial y^{j}} f(x_{\alpha} ,y_{\alpha})} + E(f) \]
where the nodes \((x_{\alpha},y_{\alpha}) ,\alpha= 1,2,3\) are the vertices of the simplex. Such kind of quadratures belong to a more general class of formulas for numerical integration, which are called boundary-type quadrature formulas. We discuss three classes of such formulas that are exact for algebraic polynomials and generate embedded pairs. We give bounds for the truncation errors and conditions for convergence. Finally, we show how to organize an algorithm for the automatic computation of the quadratures with estimate of the errors and provide some numerical examples.

MSC:

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
41A63 Multidimensional problems
Full Text: DOI

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: National Bureau of Standards. Wiley, New York (1972) · Zbl 0543.33001
[2] Agarwal, R.P., Wong, P.J.Y.: Error Inequalities in Polynomial Interpolation and Their Applications. Kluwer, Dordrecht (1993) · Zbl 0881.41001
[3] Bretti, G., Ricci, P.E.: Euler polynomials and the related quadrature rule. Georgian Math. J. 8, 447–453 (2001) · Zbl 0992.33004
[4] Buckholtz, J.D., Shaw, J.K.: On functions expandable in Lidstone series. J. Math. Anal. Appl. 47, 626–632 (1974) · Zbl 0294.30014 · doi:10.1016/0022-247X(74)90014-6
[5] Cools, R., Haegemans, A.: On the construction of multi-dimensional embedded cubature formulae. Numer. Math. 55, 735–745 (1989) · Zbl 0671.65017 · doi:10.1007/BF01389339
[6] Costabile, F.: Expansion of real functions in Bernoulli polynomials and applications. Conf. Semin. Math. Univ. Bari 27, 1–13 (1999) · Zbl 1029.41019
[7] Costabile, F., Dell’Accio, F.: Expansions over a simplex of real functions by means of Bernoulli polynomials. Numer. Algorithms 28, 63–86 (2001) · Zbl 0997.65012 · doi:10.1023/A:1014074211736
[8] Costabile, F.A., Dell’Accio, F.: Lidstone approximation on the triangle. Appl. Numer. Math. 52, 339–361 (2005) · Zbl 1064.65008 · doi:10.1016/j.apnum.2004.08.003
[9] Costabile, F.A., Dell’Accio, F.: Polynomial approximation of C M function by means of boundary values and applications: A survey, J. Comput. Appl. Math. (2006), doi: 10.1016/j.cam.2006.10.059
[10] Costabile, F., Dell’Accio, F., Luceri, R.: Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values. J. Comput. Appl. Math. 176, 77–90 (2005) · Zbl 1058.65014 · doi:10.1016/j.cam.2004.07.004
[11] Costabile, F.A., Dell’Accio, F., Guzzardi, L.: New bivariate polynomial expansion with only boundary data. Pubblicazioni LAN Unical. 15 (2006)
[12] Davis, P.J.: Interpolation & Approximation. Blaisdell Publishing (1963); reprinted by Dover, New York (1975) · Zbl 0111.06003
[13] Gautschi, W.: Numerical Analysis. An Introduction. Birkhäuser, Boston, MA (1997) · Zbl 0877.65001
[14] He, T.X.: Dimensionality Reducing Expansion of Multivariate Integration. Birkhäuser, Boston, MA (2001) · Zbl 1085.65025
[15] He, T.X.: Dimensionality-reducing expansion, boundary type quadrature formulas, and the boundary element method. In: Analysis, Combinatorics and Computing, pp. 235–250. Nova, Hauppauge, NY (2002) · Zbl 1081.65547
[16] Henrici, P.: Applied and Computational Complex Analysis. Vol. 2: Special Functions-integral Transforms-asymptotics-continued Fractions. Reprinted from 1977 original version by Wiley, New York (1991) · Zbl 0363.30001
[17] Lanczos, C.: Applied Analysis. Prentice-Hall, Englewood Cliff, NJ (1956) · Zbl 0111.12403
[18] Lidstone, G.J.: Notes on the extension of Aitken’s theorem (for polynomial interpolation) to the Everett types. Proc. Edinb. Math. Soc. 2, 16–19 (1929) · JFM 56.1053.03 · doi:10.1017/S0013091500007501
[19] Widder, D.V.: Completely convex functions and Lidstone series. Trans. Am. Math. Soc. 51, 387–398 (1942) · Zbl 0027.39202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.