×

Integral equations with diagonal and boundary singularities of the kernel. (English) Zbl 1118.45003

The authors study Fredholm and Volterra integral equations with weakly singular kernels \(K(x,y)\), \(x.y\in \Omega:=[a,b]\times[c,d]\), which occur not only on the diagonal \(x=y\) but also on the boundary \(\partial\Omega\) and are given through estimates. An example of such kernel is: \[ \left| \left(\frac{\partial}{\partial x}\right)^k\left(\frac{\partial}{\partial x} +\frac{\partial}{\partial y}\right)^l K(x,y)\right| \leq C| x-y| ^{-\nu-k} (y-a)^{-\lambda-l}(b-y)^{-\mu-l} \] where \(0\leq\nu,\lambda,\mu<1\) and \(k,l,k+l\leq m\). The weighted spaces of smooth functions having singularities on the boundary \(\partial\Omega\) are introduced and it is proved that they are optimal for solving Fredholm integral equations with singular kernels of the indicated type. These obtained results enhance earlier investigations of K. E. Arkinson, H. Brunner and others who considered the one-dimensional case.

MSC:

45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
45M05 Asymptotics of solutions to integral equations
Full Text: DOI

References:

[1] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind. Cambridge: Cambridge Univ. Press 1997. · Zbl 0899.65077 · doi:10.1017/CBO9780511626340
[2] Brunner, H., Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20 (1983), 1106 - 1119. · Zbl 0533.65087 · doi:10.1137/0720080
[3] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge: Cambridge Univ. Press 2004. · Zbl 1059.65122 · doi:10.1017/CBO9780511543234
[4] Brunner, H. and P.J. van der Houwen,P. J., The Numerical Solution of Volterra Equations. Amsterdam: North-Holland, 1986. · Zbl 0611.65092
[5] Brunner, H., A. Pedas, A. and Vainikko, G., The piecewise polynomial collo- cation method for nonlinear weakly singular Volterra equations. Math. Comp. 68 (1999), 1079 - 1095. · Zbl 0941.65136 · doi:10.1090/S0025-5718-99-01073-X
[6] Cao, Y. and Xu, Y., Singularity preserving Galerkin methods for weakly singular Fredholm integral equations. J. Integral Equations Appl. 6 (1994), 303 - 334. · Zbl 0819.65139 · doi:10.1216/jiea/1181075816
[7] Graham, I. G., Singularity expansions for solutions of second kind Fredholm integral equations with weakly singular convolution kernels. J. Integral Equa- tions Appl. 4 (1982), 1 - 30. · Zbl 0482.45003
[8] Kaneko, H., Noren, R. D. and Padilla, P. A., Singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. Adv. Comput. Math. 9 (1998), 363 - 376. · Zbl 0918.65089 · doi:10.1023/A:1018910128100
[9] Kaneko, H., Noren, R. D. and Xu, Y., Regularity of the solution of Ham- merstein equations with weakly singular kernel. Integral Equations Operator Theory 13 (1990), 660 - 670. · Zbl 0706.45005 · doi:10.1007/BF01732317
[10] Kangro, R., On the smoothness of solutions to an integral equation with a kernel having a singularity on a curve. Acta et Comm. Univ. Tartuensis 913 (1990), 24 - 37. · Zbl 0801.45002
[11] Kangro, U., The smoothness of the solution to a two-dimensional integral equation with logarithmic kernel. Z. Anal. Anwendungen 12 (1993), 305 - 318. · Zbl 0787.45002
[12] Lions, J. L. and Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Berlin: Springer 1972. · Zbl 0223.35039
[13] Miller, R. K. and Feldstein, A., Smoothness of solutions of Volterra inte- gral equations with weakly singular kernels. SIAM J. Math. Anal. 2 (1971), 242 - 258. · Zbl 0217.15602 · doi:10.1137/0502022
[14] Pedas, A., On the smoothness of the solution of integral equation with a weakly singular kernel (in Russian). Acta et Comm. Univ. Tartuensis 492 (1979), 56 - 68. · Zbl 0429.45003
[15] Pedas, A. and Vainikko, G., The smoothness of solutions to nonlinear weakly singular integral equations. Z. Anal. Anwendungen 13 (1994), 463 - 476. · Zbl 0803.45007
[16] Pedas, A. and Vainikko, G., Boundary singularities of solutions to integral equations of the second kind. WSEAS Transactions Math. 4 (2005), 70 - 75. · Zbl 1205.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.