×

Algebraic convergence for anisotropic edge elements in polyhedral domains. (English) Zbl 1116.78020

In this paper the authors studied the approximation of solutions of the time-harmonic Maxwell equations in a three-dimensional bounded domain filled with an isotropic, homogeneous material whose magnetic permeability and electric permittivity are given by positive constants. The approximation is achieved using finite elements in the situation where is a Lipschitz polyhedron. Such a situation is very natural from the practical point of view, but is the cause of important difficulties, and even sometimes obstructions to a converging approximation. The main reason of this is the very poor regularity of solutions when has non-convex edges and corners. Because of the poor regularity of solution, the convergence rate is very low and so is lost all benefits of the use of higher degree elements. Here is used the anisotropic weighted Sobolev regularity of the solution on domain with three-dimensional edges and corners. The authors proved the discrete compactness property needed for convergence of the Maxwell eigenvalue problem.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Acosta, G., Durán, R.G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal. 37, 18–36 (1999) (electronic) · Zbl 0948.65115 · doi:10.1137/S0036142997331293
[2] Al-Shenk, N.: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comp. 63, 105–119 (1994) · Zbl 0807.65003 · doi:10.1090/S0025-5718-1994-1226816-5
[3] Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998) · Zbl 0914.35094 · doi:10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
[4] Apel, T.: Anisotropic finite elements: Local estimates and applications. Advances in Numerical Mathematics, Teubner, Stuttgart, 1999 · Zbl 0934.65121
[5] Apel, T.: Personal communication. July 2003
[6] Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing 47, 277–293 (1992) · Zbl 0746.65077 · doi:10.1007/BF02320197
[7] Apel, T., Nicaise, S.: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Meth. Appl. Sci. 21, 519–549 (1998) · Zbl 0911.65107 · doi:10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R
[8] Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979) · Zbl 0423.65057 · doi:10.1007/BF01399326
[9] Birman, M., Solomyak, M.: L2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42(6), 75–96 (1987) · Zbl 0653.35075 · doi:10.1070/RM1987v042n06ABEH001505
[10] Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000) · Zbl 0967.65106 · doi:10.1007/s002110000182
[11] Boffi, D.: A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14, 33–38 (2001) · Zbl 0983.65125 · doi:10.1016/S0893-9659(00)00108-7
[12] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Vol. 15, Springer-Verlag, Berlin, 1991 · Zbl 0788.73002
[13] Buffa, A.: Remarks on the discretization of some non-positive operator with application to heterogeneous Maxwell problems. SIAM J. Num. Anal. 43(1), 1–18 (2005) · Zbl 1128.78010 · doi:10.1137/S003614290342385X
[14] Buffa, A., Costabel, M., Dauge, M.: Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron. C. R. Math. Acad. Sci. Paris 336(7), 565–570 (2003) · Zbl 1113.78300
[15] Buffa, A., Hiptmair, R., von Petersdorff, T., Schwab, C.: Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Mathem. 95(3), 459–485 (2003) · Zbl 1071.65160 · doi:10.1007/s00211-002-0407-z
[16] Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580–607 (2000) (electronic) · Zbl 1005.78012 · doi:10.1137/S0036142999357506
[17] Caorsi, S., Fernandes, P., Raffetto, M.: Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. M2AN Math. Model. Numer. Anal. 35, 331–354 (2001) · Zbl 0993.78016
[18] Cessenat, M.: Mathematical methods in Electromagnetism. Linear Theory and Applications, vol. 41 of Series of advances in mathematics for applied sciences, Word Scientific publishing, 1996 · Zbl 0917.65099
[19] Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978 · Zbl 0383.65058
[20] Ciarlet, P., Jr, Zou, J.: Fully discrete finite element approaches for time-dependant Maxwell’s equations. Numer. Math. 82, 193–219 (1999) · Zbl 1126.78310 · doi:10.1007/s002110050417
[21] Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151, 221–276 (2000) · Zbl 0968.35113 · doi:10.1007/s002050050197
[22] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhdreal domains. Numer. Mathem. 93, 239–277 (2002) · Zbl 1019.78009 · doi:10.1007/s002110100388
[23] Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave Propagation, Lecture Notes in Computational Science and Engineering., Vol. 31, Springer, 2003, pp. 125–161 · Zbl 1116.78002
[24] Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33, 627–649 (1999) · Zbl 0937.78003
[25] Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of the hp-FEM for the weighted regularization of Maxwell equations in polygonal domains. To appear in Math. Models Methods Appl. Sci. 15(4), 2005 · Zbl 1078.65089
[26] Dauge, M.: Elliptic boundary value problems on corner domains. Lecture Notes in Mathematics, Springer Verlag, Berlin, 1988 · Zbl 0668.35001
[27] Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12, 97–112, iii (1978) · Zbl 0393.65024
[28] Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. II. Error estimates for the Galerkin method. RAIRO Anal. Numér. 12, 113–119, iii (1978) · Zbl 0393.65025
[29] Durán, R.G.: Error estimates for 3-d narrow finite elements. Math. Comp. 68, 187–199 (1999) · Zbl 0910.65078 · doi:10.1090/S0025-5718-99-00994-1
[30] Farhloul, M., Nicaise, S., Paquet, L.: Some mixed finite element methods on anisotropic meshes. M2AN Math. Model. Numer. Anal. 35, 907–920 (2001) · Zbl 0990.65129
[31] Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Sringer-Verlag, Berlin, 1986 · Zbl 0585.65077
[32] Guo, B.Q.: The h-p version of the finite element method for solving boundary value problems in polyhedral domains. In: M. Costabel, M. Dauge, S. Nicaise (eds.), Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993), Dekker, New York, 1995, pp. 101–120 · Zbl 0855.65114
[33] Hiptmair, R.: Canonical construction of finite elements. Math. Comp. 68, 1325–1346 (1999) · Zbl 0938.65132 · doi:10.1090/S0025-5718-99-01166-7
[34] Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica, 2002, pp. 237–339 · Zbl 1123.78320
[35] Kikuchi, F.: On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 479–490 (1989) · Zbl 0698.65067
[36] Krízek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29, 513–520 (1992) · Zbl 0755.41003 · doi:10.1137/0729031
[37] Leis, R.: Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math. Z. 106, 213–224 (1968) · doi:10.1007/BF01110135
[38] Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992) · Zbl 0761.65097 · doi:10.1137/0729045
[39] Nédélec, J.: Mixed finite element in \(\mathbb{R}\)3. Numer. Math. 35, 315–341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[40] Nicaise, S.: Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39, 784–816 (2001) (electronic) · Zbl 1001.65122 · doi:10.1137/S003614290036988X
[41] Raviart, P.A., Thomas, J.M.: Primal hybrid finite element methods for second order elliptic problems. Math. Comput. 31, 391–413 (1977) · Zbl 0364.65082
[42] Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for Second Order Elliptic Problems, vol. 606 of Springer Lecture Notes in Mathematics, Springer, New York, 1977, pp. 292–315 · Zbl 0362.65089
[43] Schwab, C.: p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York, 1998 · Zbl 0910.73003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.