×

Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonance effects. (English) Zbl 1110.34031

Summary: Dynamical systems theory predicts that inherently oscillatory systems undergoing periodic forcings will exhibit resonance phenomena, which are characterized by qualitative dynamical consequences resulting from the amplification of small external perturbations. In this paper, we use extensive numerical simulations to demonstrate that the periodic nature of pulse vaccination strategies can make disease dynamics resonate. We proceed step by step in order to tease apart the dynamical consequences of (i) the intrinsic nonlinearity of the host-pathogen system, (ii) the seasonal variation in transmission and (iii) the additional forcing caused by vaccinating in pulses. We document that the resonance phenomenon associated with pulse vaccination can have quantitative epidemiological implications and produce perverse effects such as an unexpected increase in the number of infectives as the vaccination frequency increases. Our findings emphasize the importance of carefully taking into account the dynamical properties of the disease when designing a pulse vaccination strategy.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D05 Asymptotic properties of solutions to ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
92D30 Epidemiology
Full Text: DOI

References:

[1] Agur, Z., Randomness synchrony population persistence, J. Theoret. Biol., 112, 677-693 (1985)
[2] Agur, Z.; Cojocaru, L.; Anderson, R. M.; Danon, Y. L., Pulse mass measles vaccination across age cohorts, Proc. Natl. Acad. Sci. USA, 90, 11698-11702 (1993)
[3] Anderson, R. M.; Grenfell, B. T.; May, R. M., Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: time series analysis, J. Hyg. Camb., 93, 587-608 (1984)
[4] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[5] Aron, J.; Schwartz, I., Seasonality and period-doubling bifurcations in an epidemic model, J. Theoret. Biol., 110, 665-679 (1984)
[6] Bailey, N. T.J., The Mathematical Theory of Infectious Diseases (1975), Charles Griffin and Company Ltd: Charles Griffin and Company Ltd London · Zbl 0115.37202
[7] Bartlett, M. S., Measles periodicity and community size, J. Roy. Statist. Soc. Ser. A, 120, 48-70 (1957)
[8] Billings, L.; Schwartz, I. B., Exciting chaos with noise: unexpected dynamics in epidemic outbreaks, J. Math. Biol., 44, 31-48 (2002) · Zbl 0990.92036
[9] Bjørnstad, O. N.; Finkenstädt, B.; Grenfell, B. T., Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model, Ecol. Monogr., 72, 169-184 (2002)
[10] Bolker, B. M.; Grenfell, B. T., Chaos and biological complexity in measles dynamics, Proc. R. Soc. Lond. B, 251, 75-81 (1993)
[11] Bolker, B. M.; Grenfell, B. T., Space, persistence and dynamics of measles epidemics, Philos. Trans. R. Soc. Lond. B, 348, 309-320 (1995)
[12] Bolker, B. M.; Grenfell, B. T., Impact of vaccination on the spatial correlation and persistence of measles dynamics, Proc. Natl. Acad. Sci. USA, 93, 12648-12653 (1996)
[13] Deguen, S.; Flahault, A., Impact of immunization of seasonal cycle of chickenpox, Eur. J. Epidemiol., 16, 1177-1181 (2000)
[14] Diekmann, O.; Heesterbeek, J. A.P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (2000), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 0997.92505
[15] Dietz, K., The incidence of infectious diseases under the influence of seasonal fluctuations, Lect. Notes Biomath., 11, 1-5 (1976) · Zbl 0333.92014
[16] d’Onofrio, A., Stability properties of pulses vaccination strategy in SEIR epidemic model, Math. Biosci., 179, 57-72 (2002) · Zbl 0991.92025
[17] Earn, D. J.D.; Rohani, P.; Bolker, B. M.; Grenfell, B. T., A simple model for complex dynamical transitions in epidemics, Science, 287, 667-670 (2000)
[18] Earn, D. J.D.; Rohani, P.; Grenfell, B. T., Persistence, chaos and synchrony in ecology and epidemiology, Proc. R. Soc. Lond. B, 265, 7-10 (1998)
[19] Ellner, S.; Bailey, B. A.; Bobashev, G. V.; Gallant, A. R.; Grenfell, B. T.; Nychka, D. W., Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling, Am. Nat., 151, 425-440 (1998)
[20] Fine, P. E.M.; Clarkson, J. A., Measles in England and Wales. 1. An analysis of factors underlying seasonal patterns, Int. J. Epidemiol., 11, 5-14 (1982)
[21] Fine, P. E.M.; Clarkson, J. A., Seasonal influences on pertussis, Int. J. Epidemiol., 15, 237-247 (1986)
[22] Glendinning, P.; Perry, L. P., Melnikov analysis of chaos in a simple epidemiological model, J. Math. Biol., 35, 359-373 (1997) · Zbl 0867.92021
[23] Greenman, J.; Kamo, M.; Boots, M., External forcing of ecological and epidemiological systems: a resonance approach, Physica D, 190, 136-151 (2004) · Zbl 1040.92046
[24] Grenfell, B. T.; Bjørnstad, O. N.; Finkenstädt, B. F., Dynamics of measles epidemics: scaling noise, determinism, and predictability with the TSIR model, Ecol. Monogr., 72, 185-202 (2002)
[25] Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J., Travelling waves and spatial hierarchies in measles epidemics, Nature, 414, 716-723 (2001)
[26] Grossman, Z., Oscillatory phenomena in a model of infectious diseases, Theor. Popul. Biol., 18, 204-243 (1980) · Zbl 0457.92020
[27] Grossman, Z.; Gumowski, I.; Dietz, K., The incidence of infectious diseases under the influence of seasonal fluctuations — analytical approach, (Lakshmikantham, V., Nonlinear Systems and Applications (1977), Academic Press: Academic Press New York), 525-546
[28] Hethcote, H. W., Oscillations in an endemic model for pertussis, Can. Appl. Math. Q., 6, 61-88 (1998) · Zbl 0919.92032
[29] Jackson, E. A., Perspectives of Nonlinear Dynamics: Volume 1 (1992), Cambridge University Press: Cambridge University Press Cambridge
[30] Jordan, D. W.; Smith, P., Nonlinear Ordinary Differential Equations (1999), Oxford University Press: Oxford University Press Oxford · Zbl 0955.34001
[31] Keeling, M. J.; Grenfell, B. T., Disease extinction and community size: modeling the persistence of measles, Science, 275, 65-67 (1997)
[32] Keeling, M. J.; Rohani, P.; Grenfell, B. T., Seasonally forced disease dynamics explored as switching between attractors, Physica D, 148, 317-335 (2001) · Zbl 1076.92511
[33] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115, 700-721 (1927) · JFM 53.0517.01
[34] Lloyd, A. L.; May, R. M., Spatial heterogeneity in epidemic models, J. Theoret. Biol., 179, 1-11 (1996)
[35] London, W. P.; Yorke, J. A., Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates, Am. J. Epidemiol., 98, 453-468 (1973)
[36] Nokes, D. J.; Swinton, J., Vaccination in pulses: a strategy for global eradication of measles and polio?, Trends Microbiol., 5, 14-19 (1997)
[37] Rhodes, C. J.; Jensen, H. J.; Anderson, R. M., On the critical behaviour of simple epidemics, Proc. R. Soc. Lond. B, 264, 1639-1646 (1997)
[38] Rohani, P.; Earn, D. J.D.; Grenfell, B. T., Opposite patterns of synchrony in sympatric disease metapopulations, Science, 286, 968-971 (1999)
[39] Rohani, P.; Earn, D. J.D.; Grenfell, B. T., Impact of immunisation on pertussis transmission in England and Wales, Lancet, 355, 285-286 (2000)
[40] Rohani, P.; Keeling, M. J.; Grenfell, B. T., The interplay between determinism and stochasticity in childhood diseases, Am. Nat., 159, 469-481 (2002)
[41] Schaffer, W. M.; Kot, M., Nearly one dimensional dynamics in an epidemic, J. Theoret. Biol., 112, 403-427 (1985)
[42] Schenzle, D., An age-structured model of pre- and post-vaccination measles transmission, IMA J. Math. Appl. Med. Biol., 1, 169-191 (1984) · Zbl 0611.92021
[43] Schwartz, I., Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models, J. Math. Biol., 21, 347-361 (1985) · Zbl 0558.92013
[44] Schwartz, I.; Smith, H., Infinite subharmonic bifurcation in an SEIR epidemic model, J. Math. Biol., 18, 233-253 (1983) · Zbl 0523.92020
[45] Shulgin, B.; Stone, L.; Agur, Z., Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60, 1123-1148 (1998) · Zbl 0941.92026
[46] Smith, H., Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17, 179-190 (1983) · Zbl 0529.92018
[47] Stirzaker, D., A perturbation method for the stochastic recurrent epidemic, J. Inst. Math. Appl., 15, 135-160 (1975) · Zbl 0327.92014
[48] Stone, L.; Shulgin, B.; Agur, Z., Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Modeling, 31, 207-215 (2000) · Zbl 1043.92527
[49] Tidd, C. W.; Olsen, L. F.; Schaffer, W. M., The case for chaos in childhood epidemics. II. Predicting historical epidemics from mathematical models, Proc. R. Soc. Lond. B, 254, 257-273 (1993)
[50] Tuckwell, H. C.; Toubiana, L.; Vibert, J.-F., Enhancement of epidemic spread by noise and stochastic resonance in spatial network models with viral dynamics, Phys. Rev. E, 61, 5611-5619 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.