×

Remarks on \(L^{p}\)-oscillation of the modulus of a holomorphic function. (English) Zbl 1109.30041

J. Math. Anal. Appl. 326, No. 1, 1-11 (2007); corrigendum ibid. 341, No. 1, 750 (2008).
Denote by \(H(\mathbb D)\) the set of all holomorphic functions in the unit disk \(\mathbb D\) and by \(H^p(\mathbb D)\) the usual Hardy space. Let \(\omega:[0,2]\mapsto\mathbb R\) be a continuous increasing function such that \(\omega(0)=0\) and so that \(\omega(t)/t\geq \omega(s)/s\) whenever \(0\leq t\leq s\). Moreover, let
\[ \Lambda_\omega(\mathbb D)= \biggl\{f:\mathbb D\to\mathbb C,\;\sup_{z\not=w} \frac{| f(z)-f(w)| }{\omega(| z-w| )} <\infty\biggr\}. \]
K. Dyakonov [Acta Math. 178, 143–167 (1997; Zbl 0898.30049)] studied the functions in \( \Lambda_\omega(\mathbb D)\cap H(\mathbb D)\) in terms of their moduli. The paper under review continues this line of research by considering the same problem for the Hardy-Lipschitz spaces \[ \Lambda_\omega^p(\mathbb D)= \biggl\{f:\mathbb D\to\mathbb C \text{ Borel measurable, } \sup_{z\not=w}\frac{\|f_w-f_z\|_p}{\omega(| w-z| )}<\infty\biggr\}, \]
where \(f_w\) is given by \(f_w(\xi)=f(w\xi)\) for \(| \xi| <1/| w| \), \(w\in\mathbb D\), and where \(\|g\|_p\) is the usual \(H^p(\mathbb D)\)-norm. The author also addresses the question when the product of a function \(f\in H^p(\mathbb D)\bigcap \Lambda_\omega^p(\mathbb D)\) with an inner function \(I\) is in \(\Lambda_\omega^p(\mathbb D)\) again.
Reviewer’s remark. Formula (3) and the definition of the oscillation \(\text{osc}(u;z,\varepsilon)\) is not printed correctly.

MSC:

30H05 Spaces of bounded analytic functions of one complex variable
30D55 \(H^p\)-classes (MSC2000)

Citations:

Zbl 0898.30049
Full Text: DOI

References:

[1] Ahern, P., The Poisson integral of a singular measure, Canad. J. Math., 35, 735-749 (1983) · Zbl 0553.28006
[2] Bernstein, S. N., On majorants of finite or quasi-finite growth, Dokl. Akad. Nauk SSSR (NS), 65, 117-120 (1949), (in Russian) · Zbl 0041.40408
[3] Böe, B., A norm on the holomorphic Besov space, Proc. Amer. Math. Soc., 131, 1, 235-241 (2003) · Zbl 1006.30032
[4] Duren, P. L., Theory of \(H^p\) Spaces, Pure Appl. Math., vol. 38 (1970), Academic Press: Academic Press New York · Zbl 0215.20203
[5] Dyakonov, K. M., Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 178, 143-167 (1997) · Zbl 0898.30040
[6] Dyakonov, K. M., Holomorphic functions and quasiconformal mappings with smooth moduli, Adv. Math., 187, 146-172 (2004) · Zbl 1056.30018
[7] Dyakonov, K. M., Strong Hardy-Littlewood theorems for analytic functions and mappings of finite distortion, Math. Z., 249, 3, 597-611 (2005) · Zbl 1067.30042
[8] K.M. Dyakonov, Addendum to “Strong Hardy-Littlewood theorems for analytic functions and mappings of finite distortion”, preprint; K.M. Dyakonov, Addendum to “Strong Hardy-Littlewood theorems for analytic functions and mappings of finite distortion”, preprint · Zbl 1218.30061
[9] Fefferman, C.; Stein, E. M., \(H^p\) spaces of several variables, Acta Math., 129, 137-193 (1972) · Zbl 0257.46078
[10] Mateljević, M.; Pavlović, M., On the integral means of the derivative of the atomic function, Proc. Amer. Math. Soc., 87, 309-316 (1982) · Zbl 0524.30023
[11] Pavlović, M., Lipschitz spaces and spaces of harmonic functions in the unit disc, Michigan Math. J., 35, 301-311 (1988) · Zbl 0689.31001
[12] Pavlović, M., On the moduli of continuity of \(H^p\) functions with \(0 < p < 1\), Proc. Edinb. Math. Soc., 35, 89-100 (1992) · Zbl 0754.30029
[13] Pavlović, M., On Dyakonov’s paper ‘Equivalent norms on Lipschitz-type spaces of holomorphic functions’, Acta Math., 183, 141-143 (1999) · Zbl 0989.46011
[14] Pavlović, M., On subharmonic behaviour and oscillation of functions on balls in \(R^n\), Publ. Inst. Math. (Belgrade), 55, 18-22 (1994) · Zbl 0824.31003
[15] Pavlović, M., Introduction to Function Spaces on the Disk, Posebna Izdan. (Special Editions), vol. 20 (2004), Matematički Institut SANV: Matematički Institut SANV Belgrade · Zbl 1107.30001
[16] Storoženko, E. A., On a problem of Hardy and Littlewood, Mat. Sb., 119, 161, 564-583 (1982), (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.