×

On a two-variable zeta function for number fields. (English) Zbl 1106.11036

Authors’ summary: This paper studies a two-variable zeta function \(Z_K (w, s)\) attached to an algebraic number field \(K\), introduced by G. van der Geer and R. Schoof [Sel. Math., New Ser. 6, No. 4, 377–398 (2000; Zbl 1030.11063)], which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When \(w= 1\) this function becomes the completed Dedekind zeta function \(\hat\zeta_K(s)\) of the field \(K\). The function is a meromorphic function of two complex variables with polar divisor \(s(w - s)\), and it satisfies the functional equation \(Z_K(w, s) = Z_K(w,w - s)\). We consider the special case \(K = {\mathbb Q}\), where for \(w = 1\) this function is \(\hat{\zeta}(s)= \pi^{-{s\over 2}} \Gamma({s\over 2}) \zeta(s)\). The function \(\xi_{{\mathbb Q}}(w, s) := {s(s- w)\over 2 w}Z_{{\mathbb Q}}(w, s)\) is shown to be an entire function on \({\mathbb C}^2\), to satisfy the functional equation \(\xi_{{\mathbb Q}}(w, s) = \xi_{{\mathbb Q}}(w, w - s),\) and to have \(\xi_{{\mathbb Q}}(0, s) =-{s^2\over 8}(1 - 2^{1 + {s\over 2}}) (1 - 2^{1 - {s\over 2}}) \hat{\zeta}({s\over 2}) \hat{\zeta}({-s\over 2}).\) We study the location of the zeros of \(Z_{{\mathbb Q}}(w, s)\) for various real values of \(w = u\). For fixed \(u \geq 0\) the zeros are confined to a vertical strip of width at most \(u + 16 \) and the number of zeros \(N_u(T)\) to height \(T\) has similar asymptotics to the Riemann zeta function. For fixed \(u < 0\) these functions are strictly positive on the {“}critical line{”} \({\mathfrak R}(s) = {u\over 2}\). This phenomenon is associated to a positive convolution semigroup with parameter \(u \in {\mathbb R}_{> 0}\), which is a semigroup of infinitely divisible probability distributions, having densities \(P_u(x)dx\) for real \(x\), where \(P_u(x) = {1\over 2\pi}\theta(1)^u Z_{{\mathbb Q}}(-u, -{u\over 2} + ix),\) and \(\theta(1) = \pi^{1/4}/ \Gamma(3/4)\).

MSC:

11M41 Other Dirichlet series and zeta functions
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
32A15 Entire functions of several complex variables

Citations:

Zbl 1030.11063

References:

[1] The Theory of Partitions (1976) · Zbl 0655.10001
[2] Special Functions (1999) · Zbl 0920.33001
[3] Modular Functions and Dirichlet Series in Number Theory (1976) · Zbl 0697.10023
[4] Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc, 38, 435-465 (2001) · Zbl 1040.11061 · doi:10.1090/S0273-0979-01-00912-0
[5] On the distribution of zeros of linear combinations of Euler products, Duke Math. J, 80, 821-862 (1995) · Zbl 0853.11074
[6] Convolution structures and arithmetic cohomology (32001) · Zbl 1158.11340
[7] Families of Automorphic Forms (1994) · Zbl 0821.11029
[8] Turán inequalitites and zeros of Dirichlet series associated with certain cusp forms, Trans. Amer. Math. Soc, 342, 407-419 (1994) · Zbl 0796.11021 · doi:10.2307/2154701
[9] Multiplicative Number Theory (1980) · Zbl 0453.10002
[10] An Introduction to Probability Theory and its Applications, Volume II (1971) · Zbl 0219.60003
[11] Effectivity of Arakelov Divisors and the theta divisor of a number field, 6 (2000) · Zbl 1030.11063
[12] On a result of Selberg concerning zeros of linear combinations of L-functions, Internat. Mat. Research Notices, 11, 551-577 (2000) · Zbl 1159.11318 · doi:10.1155/S1073792800000301
[13] Introduction to Modular Forms (1976) · Zbl 0344.10011
[14] Algebraic Number Theory (1994) · Zbl 0811.11001
[15] The Fourier coefficients of automorphic forms on horocyclic groups II, Michigan Math. J, 6, 173-193 (1959) · Zbl 0085.30003 · doi:10.1307/mmj/1028998189
[16] Magnitude of the Fourier coefficients of automorphic forms of negative dimension, Bull. Amer. Math. Soc, 67, 603-606 (1961) · Zbl 0106.28702 · doi:10.1090/S0002-9904-1961-10707-6
[17] Discontinuous Groups and Arithmetic Subgroups, Number VIII (1964) · Zbl 0178.42902
[18] On special divisors and the two variable zeta function of algebraic curves over finite fields, Arithmetic, Geometry and Coding Theory, 175-184 (1996) · Zbl 1019.11016
[19] Über automorphe Orthogonalfunktionen und die Konstruktion der automorphen Formen von positiver reeller Dimension, Math. Ann, 127, 33-81 (1954) · Zbl 0058.06801 · doi:10.1007/BF01361110
[20] Über Betragmittelwerte und die Fourier-Koeffizienten der ganzen automorphen Formen, Arch. Math. (Basel), 9, 176-182 (1958) · Zbl 0082.29504
[21] Infinitely divisible laws associated to hyperbolic functions, Univ. Calif.-Berkeley Stat. Technical Rept., 581 (2001)
[22] On the expansion of the partition function in a series, Ann. Math, 44, 416-422 (1943) · Zbl 0060.10005 · doi:10.2307/1968973
[23] Introduction to the Theory of Entire Functions of Several Variables (1974) · Zbl 0286.32004
[24] Entire Functions, Several Complex Variables III, Volume 9, 1-30 (1989) · Zbl 0658.32001
[25] Holomorphic Functions of Finite Order in Several Complex Variables, CBMS Publication, No. 21 (1974) · Zbl 0292.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.