×

Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions. (English) Zbl 1094.35100

The unsteady 2D flow of a generalized Newtonian fluid is considered. The velocity \(v(x,t)=(v_1,v_2)\) and the pressure \(p(x,t)\) satisfy to the equations \[ \begin{aligned} &\frac{\partial v}{\partial t}+(v\cdot\nabla)v-\text{div}\,\sigma(v)+\nabla p=f,\quad\text{div}\,v=0, \quad x\in\Omega,\quad t\in (0,T),\\ &v(x,0)=v_0(x),\quad x\in \Omega,\\ &v(x,t)=0, \quad x\in\partial\Omega,\quad t\in (0,T).\end{aligned} \] Here \(\Omega\subset \mathbb R^2\) is a bounded domain with smooth boundary, \(\sigma(v)\) is a stress tensor of a form \[ \sigma(v)=2\mu(| S| ^2)S,\quad S(v)=\nabla v+(\nabla v)^T, \] where \(\mu\) is a given function such that the tensor \(\sigma(v)\) has the growth of order \(q-1\) for a certain \(q\in [2,4)\). The typical example of \(\sigma(v)\) is \[ \sigma(v)=\left(1+| S| ^2\right)^{\frac{q-2}{2}}S. \] It is proved that the unique weak solution to the problem has a Hölder continuous gradient if the data \(f\) and \(v_0\) are sufficiently smooth.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Amrouche, C. and V. Girault: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (119) (1994), 109 - 140. · Zbl 0823.35140
[2] Diening, L.: Theoretical and Numerical Results for Electrorheological Fluids. Freiburg: Albert-Ludwigs-Universität 2002, Ph.D. Thesis. · Zbl 1022.76001
[3] Dore, G. and A. Venni: On the closedness of the sum of two closed operators. Math. Z. 196 (1987), 189 - 201. · Zbl 0615.47002 · doi:10.1007/BF01163654
[4] Frehse, J. and G. Seregin: Full regularity for a class of degenerated parabolic systems in two spatial variables. Manuscripta Math. 99 (1999), 517 - 539. · Zbl 0931.35029 · doi:10.1007/s002290050189
[5] Giga, M., Giga, Y. and H. Sohr: Lp estimates for the Stokes system. In: Func- tional analysis and related topics, 1991 (Kyoto), vol. 1540 of Lecture Notes in Math., Berlin: Springer 1993, pp. 55 - 67. · Zbl 0804.47019
[6] Giga, Y. and T. Miyakawa: Solutions in Lr of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal. 89 (1985), 267 - 281. · Zbl 0587.35078 · doi:10.1007/BF00276875
[7] Grubb, G.: Nonhomogeneous Dirichlet Navier-Stokes problems in low regular- ity Lp Sobolev spaces. J. Math. Fluid Mech. 3 (2001), 57 - 81. · Zbl 0992.35065 · doi:10.1007/PL00000964
[8] John, O. and J. Stará: On the regularity of weak solutions to parabolic systems in two spatial dimensions. Comm. Partial Differential Equations 23 (1998), 1159 - 1170. · Zbl 0937.35020 · doi:10.1080/03605309808821382
[9] Kaplický, P.: Some remarks to regularity of flow of generalized newtonian fluid. In: International Conference on Differential Equations Hasselt 2003. Singapore: World Scientific Publishing Co. Pte. Ltd. 2005, pp. 377 - 379. · Zbl 1101.76003
[10] Kaplický, P., Málek, J. and J. Stará: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions-stationary, periodic problem. Comment. Math. Univ. Carolin. 38 (1997), 681 - 695. · Zbl 0946.76006
[11] Kaplický, P., Málek, J. and J. Stará: C1,\alpha -solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem. Zap. Nauchn. Sem. S.- Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 259 (1999), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 30, 89 - 121, 297. · Zbl 0978.35046 · doi:10.1023/A:1014440207817
[12] Kaplický, P., Málek, J. and J. Stará: On global existence of smooth two-dimensional steady flows for a class of non-Newtonian fluids under various boundary conditions. In: Applied nonlinear analysis. New York: Kluwer/Plenum 1999, pp. 213 - 229. · Zbl 0953.35120
[13] Kaplický, P., Málek, J. and J. Stará: Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities. NoDEA Nonlinear Differential Equations Appl. 9 (2002), 175 - 195. P. Kaplický · Zbl 0991.35066 · doi:10.1007/s00030-002-8123-z
[14] Koch, H. and V. A. Solonnikov: Lp-estimates for a solution to the nonsta- tionary Stokes equations. Function theory and phase transitions. J. Math. Sci. (New York) 106 (2001)(3), 3042 - 3072.
[15] Ladyzhenskaya, O. and G. Serëgin: On semigroups generated by initial- boundary value problems describing two-dimensional viscoplastic flows. In: Nonlinear evolution equations, vol. 164 of Amer. Math. Soc. Transl. Ser. 2, Providence (RI): Amer. Math. Soc. 1995, pp. 99 - 123. · Zbl 0846.35068
[16] Ladyzhenskaya, O. and G. Seregin: On the regularity of solutions of two- dimensional equations of the dynamics of fluids with nonlinear viscosity (in Russian). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 259 (1999), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 30, 145 - 166, 298. · Zbl 1060.76005 · doi:10.1023/A:1014444308725
[17] Málek, J., Ne\check cas, J., Rokyta, M. and M. R\ring u\check zi\check cka: Weak and measure-valued solutions to evolutionary PDEs. Vol. 13 of Applied Mathematics and Mathe- matical Computation. London: Chapman & Hall 1996.
[18] Málek, J., Ne\check cas, J. and M. R\ring u\check zi\check cka: On weak solutions to a class of non- Newtonian incompressible fluids in bounded three-dimensional domains: the case p \geq 2. Adv. Differential Equations 6 (2001), 257 - 302. · Zbl 1021.35085
[19] Ne\check cas, J. and V. \check Sverák: On regularity of solutions of nonlinear parabolic systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1991)(4), 1 - 11. · Zbl 0735.35035
[20] Seregin, G.: Flow of two-dimensional generalized Newtonian fluid (in Russian). Algebra i Analiz 9 (1997), 167 - 200. · Zbl 0891.35118
[21] Simon, J.: Sobolev, Besov and Nikol’ski\?ı fractional spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. 157 (1990)(4), 117 - 148. · Zbl 0727.46018 · doi:10.1007/BF01765315
[22] Sohr, H.: The Navier-Stokes Equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. Basel: Birkhäuser 2001.
[23] Temam, R.: Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics and its Applications, vol. 2. Amsterdam: North-Holland 1977. · Zbl 0383.35057
[24] Ziemer, W. P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation, vol. 120 of Graduate Texts in Mathematics. New York: Springer 1989. · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.