×

2-adic properties of certain modular forms and their applications to arithmetic functions. (English) Zbl 1084.11014

Let \(j(z) = q^{-1} + 744 + \sum_{n=1}^\infty C(n) q^n\) (with \(q= e^{2\pi\text{i}z}\) as usual) be Klein’s modular function. Its Fourier-coefficients \(C(n)\) satisfy some congruence relations. As J. Lehner has shown in [Discontinuous groups and automorphic functions, American Mathematical Society (1964; Zbl 0178.42902)] we find \(C(n)\equiv 0 \pmod {2^{3a+8}3^{2b+3}5^{c+1}7^d}\) if \(2^a3^b5^c7^d\) divides \(n\). In particular, if \(n\) is divisible by some power of 2, \(C(n)\) is divisible by a higher power of 2. Another type of condition which implies congruences modulo powers of 2 is being introduced in the paper under review. It is shown that for any \(t\in {\mathbb N}\) there is some \(c\in {\mathbb N}\) such that \(C(n)\) is divisible by \(2^t\) if there are \(c\) different primes \(p_1,\dots ,p_c\geq 3\) such that \(p_i\) divides \(n\) but does not divide \(n/p_i\). This shows that for almost all values of \(n\) (Dirichlet density) \(C(n)\) is divisible by \(2^t.\)
Similar results for partition numbers and representation numbers of some quadratic forms are given, as well as for Fourier coefficients of Kohnen newforms. The type of result resembles and generalizes results of the first author and B. Gordon [Ramanujan J. 1, No. 1, 25–34 (1997; Zbl 0907.11036)] on partition numbers. The proof uses congruences relating holomorphic and non-holomorphic modular forms and the topological nilpotency of Hecke operators acting on some spaces of 2-adic cusp forms as well as a list of 2-dimensional Galois-representations of the absolute Galois group of the field of rational numbers in characteristic 2 having small conductor.

MSC:

11F11 Holomorphic modular forms of integral weight
11F30 Fourier coefficients of automorphic forms
11F37 Forms of half-integer weight; nonholomorphic modular forms
11F80 Galois representations
Full Text: DOI

References:

[1] DOI: 10.1090/S0002-9947-97-01944-2 · Zbl 0869.05005 · doi:10.1090/S0002-9947-97-01944-2
[2] DOI: 10.1007/978-0-8176-4574-8_9 · doi:10.1007/978-0-8176-4574-8_9
[3] Buzzard K., Math. Res. Lett. 7 pp 95–
[4] K. Buzzard, Arithmetic Algebraic Geometry, IAS/Park City Math. Ser. 9 (A.M.S., Providence, 2001) pp. 223–225.
[5] DOI: 10.1215/S0012-7094-89-05937-1 · Zbl 0703.11027 · doi:10.1215/S0012-7094-89-05937-1
[6] Deligne P., Lect. Notes in Math. 179, in: Séminaire Bourbaki, 1968/69, Exp. 355 (1971)
[7] Dickson L. E., Linear Groups (1901)
[8] DOI: 10.1007/BF01232041 · Zbl 0777.11013 · doi:10.1007/BF01232041
[9] DOI: 10.1023/A:1009711020492 · Zbl 0907.11036 · doi:10.1023/A:1009711020492
[10] DOI: 10.1007/BF01455989 · Zbl 0542.10018 · doi:10.1007/BF01455989
[11] Kohnen W., Invent. Math. 64 pp 173–
[12] DOI: 10.1016/0022-314X(89)90015-2 · Zbl 0674.10024 · doi:10.1016/0022-314X(89)90015-2
[13] DOI: 10.1007/3-540-29593-3 · Zbl 1159.11014 · doi:10.1007/3-540-29593-3
[14] Moon H., Bull. Korean Math. Soc. 40 pp 537– · Zbl 1046.11033 · doi:10.4134/BKMS.2003.40.3.537
[15] Moon H., Documenta Math. Extra Volume: Kazuya Kato’s Fiftieth Birthday pp 641–
[16] DOI: 10.1090/pspum/055.2/1265566 · doi:10.1090/pspum/055.2/1265566
[17] DOI: 10.1007/978-3-642-65663-7 · doi:10.1007/978-3-642-65663-7
[18] Serre J.-P., Représentations Linéaires des Groupes Finis (1971)
[19] Serre J.-P., Asterisque 24 pp 109–
[20] Serre J.-P., L’Enseignement Math. 22 pp 227–
[21] DOI: 10.1007/BF01405086 · Zbl 0235.14012 · doi:10.1007/BF01405086
[22] Serre J.-P., Corps Locaux (1980)
[23] DOI: 10.1215/S0012-7094-87-05413-5 · Zbl 0641.10026 · doi:10.1215/S0012-7094-87-05413-5
[24] Shimura G., Publ. Math. Soc. Japan 11, in: Introduction to the Arithmetic Theory of Automorphic Functions (1971)
[25] Suprunenko D. A., Matrix Groups (1976) · Zbl 0317.20028
[26] DOI: 10.1090/conm/174/01857 · doi:10.1090/conm/174/01857
[27] Waldspurger J.-L., J. Math. Pure et Appl. 60 pp 375–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.