×

Dynamics of entanglement for one-dimensional spin systems in an external time-dependent magnetic field. (English) Zbl 1077.81020

Summary: We study the dynamics of entanglement for the \(XY\)-model, one-dimensional spin systems coupled through the nearest neighbor exchange interaction and subject to an external time-dependent magnetic field. Using the two-site density matrix, we calculate the time-dependent entanglement of formation between nearest neighbor qubits. We investigate the effect of varying the temperature, the anisotropy parameter and the external time-dependent magnetic field on the entanglement. We have found that the entanglement can be localized between nearest neighbor qubits for certain values of the external time-dependent magnetic field. Moreover, as known for the magnetization of this model, the entanglement shows nonergodic behavior, it does not approach its equilibrium value at the infinite time limit.

MSC:

81P68 Quantum computation
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics

References:

[1] DOI: 10.1038/35005001 · Zbl 1369.81023 · doi:10.1038/35005001
[2] Macchiavello C., Quantum Computation and Quantum Information Theory (2000) · Zbl 1079.81507
[3] Nielsen M., Quantum Computation and Quantum Communication (2000)
[4] Gruska J., Quantum Computing (1999)
[5] DOI: 10.1103/PhysRevLett.78.2275 · Zbl 0944.81011 · doi:10.1103/PhysRevLett.78.2275
[6] DOI: 10.1103/PhysRevLett.78.5022 · doi:10.1103/PhysRevLett.78.5022
[7] DOI: 10.1103/PhysRevLett.80.2245 · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[8] DOI: 10.1103/PhysRevLett.89.027901 · doi:10.1103/PhysRevLett.89.027901
[9] DOI: 10.1103/PhysRev.47.777 · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[10] DOI: 10.1038/35005185 · doi:10.1038/35005185
[11] DOI: 10.1103/PhysRevLett.70.1895 · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[12] DOI: 10.1038/37539 · Zbl 1369.81006 · doi:10.1038/37539
[13] DOI: 10.1103/PhysRevLett.69.2881 · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[14] DOI: 10.1103/PhysRevLett.67.661 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[15] DOI: 10.1103/PhysRevA.59.156 · doi:10.1103/PhysRevA.59.156
[16] DOI: 10.1126/science.270.5234.255 · Zbl 1226.68037 · doi:10.1126/science.270.5234.255
[17] DOI: 10.1103/PhysRevLett.85.1758 · doi:10.1103/PhysRevLett.85.1758
[18] DOI: 10.1038/416608a · doi:10.1038/416608a
[19] DOI: 10.1103/PhysRevA.67.062321 · doi:10.1103/PhysRevA.67.062321
[20] DOI: 10.1103/PhysRevA.69.022304 · doi:10.1103/PhysRevA.69.022304
[21] DOI: 10.1103/PhysRevB.59.1008 · doi:10.1103/PhysRevB.59.1008
[22] DOI: 10.1103/PhysRevLett.87.017901 · doi:10.1103/PhysRevLett.87.017901
[23] DOI: 10.1103/PhysRevA.64.012313 · doi:10.1103/PhysRevA.64.012313
[24] DOI: 10.1103/PhysRevB.66.174102 · doi:10.1103/PhysRevB.66.174102
[25] Lieb E., Ann. Phys. 60 pp 407–
[26] DOI: 10.1103/PhysRev.80.268 · Zbl 0040.13006 · doi:10.1103/PhysRev.80.268
[27] DOI: 10.1103/PhysRevA.2.1075 · doi:10.1103/PhysRevA.2.1075
[28] DOI: 10.1016/j.physleta.2004.01.022 · Zbl 1118.81368 · doi:10.1016/j.physleta.2004.01.022
[29] DOI: 10.1103/PhysRevA.66.032110 · doi:10.1103/PhysRevA.66.032110
[30] DOI: 10.1016/0031-8914(69)90185-2 · doi:10.1016/0031-8914(69)90185-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.