×

Computability on subsets of metric spaces. (English) Zbl 1071.03027

Summary: The notions “recursively enumerable” and “recursive” are the basic notions of effectivity in classical recursion theory. In computable analysis, these notions are generalized to closed subsets of Euclidean space using their metric distance functions. We study a further generalization of these concepts to subsets of computable metric spaces. It appears that different characterizations, which coincide in case of Euclidean space, lead to different notions in the general case. However, under certain additional conditions, such as completeness and effective local compactness, the situation is similar to the Euclidean case. We present all results in the framework of “Type-2 Theory of Effectivity” which allows us to express effectivity properties in a very uniform way: instead of comparing properties of single subsets, we compare corresponding representations of the hyperspace of closed subsets. Such representations do not only induce a concept of computability for single subsets, but they even yield a concept of computability for operations on hyperspaces, such as union, intersection, etc. We complete our investigation by studying the special situation of compact subsets.

MSC:

03D45 Theory of numerations, effectively presented structures
03F60 Constructive and recursive analysis
54E35 Metric spaces, metrizability
54B20 Hyperspaces in general topology
Full Text: DOI

References:

[1] Beer, G., Topologies on Closed and Closed Convex Sets (1993), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0792.54008
[2] Bishop, E.; Bridges, D. S., Constructive Analysis (1985), Springer: Springer Berlin · Zbl 0656.03042
[3] Blanck, J., Effective domain representations of \(H(X)\), the space of compact subsets, Theoret. Comput. Sci., 219, 19-48 (1999) · Zbl 0916.68092
[4] Brattka, V., Computable invariance, Theoret. Comput. Sci., 210, 3-20 (1999) · Zbl 0915.68047
[5] V. Brattka, Recursive and computable operations over topological structures, Informatik Berichte 255, FernUniversität Hagen, Fachbereich Informatik, Hagen, July 1999.; V. Brattka, Recursive and computable operations over topological structures, Informatik Berichte 255, FernUniversität Hagen, Fachbereich Informatik, Hagen, July 1999.
[6] V. Brattka, Random numbers and an incomplete immune recursive set, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessg, S. Eidenbenz, R. Conejo (Eds.), Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 2380, Springer, Berlin, 2002. pp. 950-961.; V. Brattka, Random numbers and an incomplete immune recursive set, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessg, S. Eidenbenz, R. Conejo (Eds.), Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 2380, Springer, Berlin, 2002. pp. 950-961. · Zbl 1057.03052
[7] V. Brattka, Recursive quasi-metric spaces, Theoret. Comput. Sci. this Vol. (2003).; V. Brattka, Recursive quasi-metric spaces, Theoret. Comput. Sci. this Vol. (2003). · Zbl 1071.03026
[8] V. Brattka, P. Hertling, Continuity and computability of relations, Informatik Berichte, Vol. 164, FernUniversität Hagen, Hagen, September 1994.; V. Brattka, P. Hertling, Continuity and computability of relations, Informatik Berichte, Vol. 164, FernUniversität Hagen, Hagen, September 1994.
[9] Brattka, V.; Hertling, P., Topological properties of real number representations, Theoret. Comput. Sci., 284, 241-257 (2002) · Zbl 1039.03036
[10] Brattka, V.; Weihrauch, K., Computability on subsets of Euclidean space IClosed and compact subsets, Theoret. Comput. Sci., 219, 65-93 (1999) · Zbl 0916.68042
[11] Engelking, R., General Topology (1989), Heldermann: Heldermann Berlin · Zbl 0684.54001
[12] Giusto, M.; Simpson, S. G., Located sets and reverse mathematics, J. Symbolic Logic, 65, 1451-1480 (2000) · Zbl 0967.03051
[13] Grzegorczyk, A., On the definitions of computable real continuous functions, Fund. Math., 44, 61-71 (1957) · Zbl 0079.24801
[14] Ko, K.-I., Complexity Theory of Real Functions (1991), Birkhäuser: Birkhäuser Boston · Zbl 0791.03019
[15] Kreitz, C.; Weihrauch, K., A unified approach to constructive and recursive analysis, (Richter, M.; Börger, E.; Oberschelp, W.; Schinzel, B.; Thomas, W., Computation and Proof Theory. Computation and Proof Theory, Lecture Notes in Mathematics, Vol. 1104 (1984), Springer: Springer Berlin), 259-278 · Zbl 0593.03039
[16] Lacombe, D., Les ensembles récursivement ouverts ou fermés, et leurs applications à l’Analyse récursive, Comptes Rendus, 246, 28-31 (1958) · Zbl 0080.24402
[17] Mazur, S., Computable Analysis (1963), Razprawy Matematyczne: Razprawy Matematyczne Warsaw · Zbl 0113.24306
[18] Odifreddi, P., Classical Recursion Theory (1989), North-Holland: North-Holland Amsterdam · Zbl 0931.03057
[19] Pour-El, M. B.; Richards, J. I., Computability in Analysis and Physics (1989), Springer: Springer Berlin · Zbl 0678.03027
[20] Schröder, M., Admissible representations of limit spaces, (Blanck, J.; Brattka, V.; Hertling, P., Computability and Complexity in Analysis. Computability and Complexity in Analysis, Lecture Notes in Computer Science, Vol. 2064 (2001), Springer: Springer Berlin), 273-295 · Zbl 0985.03028
[21] Schröder, M., Extended admissibility, Theoret. Comput. Sci., 284, 519-538 (2002) · Zbl 1042.68050
[22] Simpson, S. G., Subsystems of Second Order Arithmetic (1999), Springer: Springer Berlin · Zbl 0909.03048
[23] Spreen, D., On effective topological spaces, J. Symbolic Logic, 63, 185-221 (1998) · Zbl 0915.03038
[24] Turing, A. M., On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc., 42, 230-265 (1936) · Zbl 0016.09701
[25] Weihrauch, K., Computability on computable metric spaces, Theoret. Comput. Sci., 113, 191-210 (1993) · Zbl 0783.03023
[26] Weihrauch, K., Computable Analysis (2000), Springer: Springer Berlin · Zbl 0956.68056
[27] Weihrauch, K.; Zheng, X., Computability on continuous, lower semi-continuous and upper semi-continuous real functions, Theoret. Comput. Sci., 234, 109-133 (2000) · Zbl 0944.68058
[28] Yasugi, M.; Mori, T.; Tsujii, Y., Effective properties of sets and functions in metric spaces with computability structure, Theoret. Comput. Sci., 219, 467-486 (1999) · Zbl 0916.68049
[29] Zheng, X.; Brattka, V.; Weihrauch, K., Approaches to effective semi-continuity of real functions, Math. Logic. Quart., 45, 481-496 (1999) · Zbl 0942.03063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.