×

Harmonic diffeomorphisms of manifolds. (English. Russian original) Zbl 1069.53051

St. Petersbg. Math. J. 16, No. 2, 401-412 (2005); translation from Algebra Anal. 16, No. 2, 154-171 (2004).
Summary: In spite of the abundance of publications on harmonic mappings of manifolds, at present there exists neither a theory of harmonic diffeomorphisms, nor a definition of infinitesimal harmonic transformation of a Riemannian manifold, to say nothing of the theory of groups of such transformations. In the paper, this gap is partially filled, and a new subject of investigations is announced.

MSC:

53C43 Differential geometric aspects of harmonic maps
58E20 Harmonic maps, etc.
Full Text: DOI

References:

[1] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1 – 68. · Zbl 0401.58003 · doi:10.1112/blms/10.1.1
[2] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385 – 524. · Zbl 0669.58009 · doi:10.1112/blms/20.5.385
[3] Ĭ. Davidov and A. G. Sergeev, Twistor spaces and harmonic maps, Uspekhi Mat. Nauk 48 (1993), no. 3(291), 3 – 96 (Russian); English transl., Russian Math. Surveys 48 (1993), no. 3, 1 – 91. · Zbl 0851.58010 · doi:10.1070/RM1993v048n03ABEH001031
[4] Luther Pfahler Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949. 2d printing. · Zbl 1141.53002
[5] Kentaro Yano, Differential geometry on complex and almost complex spaces, International Series of Monographs in Pure and Applied Mathematics, Vol. 49, A Pergamon Press Book. The Macmillan Co., New York, 1965. · Zbl 0127.12405
[6] Геодезические отображения римановых пространств, ”Наука”, Мосцощ, 1979 (Руссиан). · Zbl 0637.53020
[7] Kentaro Yano, The theory of Lie derivatives and its applications, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1957. · Zbl 0077.15802
[8] Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. · Zbl 0246.53031
[9] H. Wu, The Bochner technique in differential geometry, Harvard Acad. Publ., London, 1987.
[10] S. E. Stepanov, The classification of harmonic diffeomorphisms, The 5-th International Conference on Geometry and Applications (August 24-29, 2001, Varna): Abstracts, Union of Bulgarian Mathematicians, Sofia, 2001, p. 55.
[11] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. · Zbl 0108.10401
[12] Sergey E. Stepanov, On the global theory of some classes of mappings, Ann. Global Anal. Geom. 13 (1995), no. 3, 239 – 249. · Zbl 0839.53028 · doi:10.1007/BF00773658
[13] Raghavan Narasimhan, Analysis on real and complex manifolds, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968. · Zbl 0188.25803
[14] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. · Zbl 0091.34802
[15] Alfred Gray and Luis M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35 – 58. · Zbl 0444.53032 · doi:10.1007/BF01796539
[16] Lew Friedland and Chuan-Chih Hsiung, A certain class of almost Hermitian manifolds, Tensor (N.S.) 48 (1989), no. 3, 252 – 263. · Zbl 0718.53027
[17] Alfred Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970), 283 – 309. · Zbl 0201.54401
[18] S. E. Stepanov, A group-theoretic approach to the study of Einstein and Maxwell equations, Teoret. Mat. Fiz. 111 (1997), no. 1, 32 – 43 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 111 (1997), no. 1, 419 – 427. · Zbl 0964.53503 · doi:10.1007/BF02634197
[19] Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. · Zbl 0613.53001
[20] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact solutions of Einstein’s field equations, Cambridge University Press, Cambridge-New York, 1980. Edited by Ernst Schmutzer; Cambridge Monographs on Mathematical Physics. · Zbl 0449.53018
[21] Albert Nijenhuis, A note on first integrals of geodesics, Nederl. Akad. Wetensch. Proc. Ser. A 70=Indag. Math. 29 (1967), 141 – 145. · Zbl 0161.18803
[22] S. E. Stepanov, On an application of a theorem of P. A. Shirokov in the Bochner technique, Izv. Vyssh. Uchebn. Zaved. Mat. 9 (1996), 53 – 59 (Russian); English transl., Russian Math. (Iz. VUZ) 40 (1996), no. 9, 50 – 55 (1997).
[23] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. · Zbl 0091.34802
[24] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. · Zbl 0051.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.