×

Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients. (English) Zbl 1069.35035

Summary: One of the basic inverse problems in an anisotropic media is the determination of coefficients in a bounded domain with a single measurement. We consider the problem of finding the coefficient of the second derivatives in a second-order hyperbolic equation with variable coefficients.
Under a weak regularity assumption and a geometrical condition on the metric, we prove the uniqueness in a multidimensional hyperbolic inverse problem with a single measurement. Moreover we show that our uniqueness results yield the Lipschitz stability estimate in \(L^2\) space for the solution to the inverse problem under consideration.

MSC:

35L20 Initial-boundary value problems for second-order hyperbolic equations
35R30 Inverse problems for PDEs
Full Text: DOI

References:

[1] Bukhgeim AL, Introduction to the Theory of Inverse Problems, Nauka (1988)
[2] Bukhgeim AL, Uniqueness in Determining Damping Coefficients in Hyperbolic Equations (2000)
[3] Bugheim AL, Soviet Math. Dokl 24 pp 244– (1981)
[4] Hörmander L, The Analysis of Linear Partial Differential Operators, Springer Verlag 1 (1985)
[5] Immanuvilov OYu, Comm. Part. Diff. Eqq. 26 pp 1409– (2001) · Zbl 0985.35108 · doi:10.1081/PDE-100106139
[6] DOI: 10.1088/0266-5611/14/5/009 · Zbl 0992.35110 · doi:10.1088/0266-5611/14/5/009
[7] Immanuvilov OYu, Inverse Problems 19 pp 157– (2003) · Zbl 1020.35117 · doi:10.1088/0266-5611/19/1/309
[8] Isakov V, Inverse Problems for Partial Differential Equations, Springer-Verlag (1988) · Zbl 0908.35134
[9] Isakov V, Comptemporary Mathematics 268 pp 191– (2000)
[10] DOI: 10.1080/00036819308840186 · Zbl 0795.35134 · doi:10.1080/00036819308840186
[11] Kubo M, J. Math. Kyoto Univ. 40 pp 451– (2000)
[12] Khaidarov A, Soviet Math. Dokl. 38 pp 614– (1989)
[13] Khaidarov A, Soviet Math. Dokl. 38 pp 614– (1989)
[14] DOI: 10.1088/0266-5611/8/4/009 · Zbl 0755.35151 · doi:10.1088/0266-5611/8/4/009
[15] Lasiecka I, Differential and Integral Equations 6 pp 507– (1993)
[16] DOI: 10.1006/jmaa.1999.6348 · Zbl 0931.35022 · doi:10.1006/jmaa.1999.6348
[17] Lavrent’ev MM, Some Ill-posed Problems of Mathematics Physics, Springer-Verlag (1967) · doi:10.1007/978-3-642-88210-4
[18] Lebeau G, Algebraic and Geometric Methods in Mathematical Physics pp pp. 73–109– (1996)
[19] DOI: 10.1215/S0012-7094-97-08614-2 · Zbl 0884.58093 · doi:10.1215/S0012-7094-97-08614-2
[20] Lions J-L, Non-homogenous Boundary Value Problems and Applications (1972)
[21] DOI: 10.1088/0266-5611/12/6/013 · Zbl 0862.35141 · doi:10.1088/0266-5611/12/6/013
[22] Robbiano L, Asymptotic Analysis 10 pp 95– (1995)
[23] DOI: 10.1080/03605309108820778 · Zbl 0735.35086 · doi:10.1080/03605309108820778
[24] Tataru D, J. Math. Pure App. 75 pp 367– (1996)
[25] Tataru D, Carleman Estimates, Unique Continuation and Applications (1999)
[26] Yamamoto M, J. Math. Pure App. 78 pp 65– (1999) · Zbl 0923.35200 · doi:10.1016/S0021-7824(99)80010-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.