×

The locally 2-arc transitive graphs admitting a Ree simple group. (English) Zbl 1058.05034

Summary: Three infinite families of locally 2-arc transitive graphs are constructed, which are vertex-intransitive, regular and all vertex stabilizers are conjugate. To the best of our knowledge these are the first infinite families of graphs with these properties. In particular, they are semi-symmetric. It is then shown that the only locally 2-arc transitive graphs admitting a Ree simple group are (i) the graphs in these three families, (ii) (vertex-transitive) 2-arc transitive graphs admitting a Ree simple group, previously classified by the first and third authors, and (iii) standard double covers of the graphs in (ii). This is the first complete classification of locally 2-arc transitive graphs for an infinite family of simple groups.

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
20D06 Simple groups: alternating groups and groups of Lie type
Full Text: DOI

References:

[1] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1985), Clarendon: Clarendon Oxford · Zbl 0568.20001
[2] Delgado, A.; Goldschmidt, D.; Stellmacher, B., Groups and Graphs: New Results and Methods (1985), Birkhäuser: Birkhäuser Basel · Zbl 0566.20013
[3] Dembowski, P., Finite Geometries (1968), Springer-Verlag: Springer-Verlag Berlin · Zbl 0159.50001
[4] Du, S. F.; Xu, M. Y., A classification of symmetric graphs of order \(2 p q\), Comm. Algebra, 28, 2685-2715 (2000) · Zbl 0944.05051
[5] Fang, X. G.; Praeger, C. E., Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra, 27, 3727-3754 (1999) · Zbl 0956.05049
[6] Fang, X. G.; Praeger, C. E., Finite two-arc transitive graphs admitting a Ree simple group, Comm. Algebra, 27, 3755-3769 (1999) · Zbl 0945.05031
[7] Giudici, M.; Li, C. H.; Praeger, C. E., Analysing finite locally \(s\)-arc transitive graphs, Trans. Amer. Math. Soc., 356, 291-317 (2004) · Zbl 1022.05033
[8] Goldschmidt, D. M., Automorphisms of trivalent graphs, Ann. of Math. (2), 111, 377-406 (1980) · Zbl 0475.05043
[9] Ivanov, A. A.; Iofinova, M. E., Biprimitive cubic graphs, (Investigations in Algebraic Theory of Combinatoria Objects. Investigations in Algebraic Theory of Combinatoria Objects, Math. Appl. (Soviet Series), vol. 84 (1993), Kluwer Academic: Kluwer Academic Dordrecht), 459-472 · Zbl 0791.05053
[10] Kemper, G.; Lübeck, F.; Magaard, K., Matrix generators for the Ree groups \(^2G_2(q)\), Comm. Algebra, 29, 1, 407-413 (2001) · Zbl 1486.20016
[11] Kleidman, P., The maximal subgroups of the Chevalley groups \(G_2(q)\) with \(q\) odd, the Ree groups \(^2G_2(q)\), and their automorphism groups, J. Algebra, 117, 1, 30-71 (1988) · Zbl 0651.20020
[12] Liebeck, M.; Praeger, C. E.; Saxl, J., The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., 432 (1990) · Zbl 0703.20021
[13] Levchuk, V. M.; Nuzhin, Ya. N., Structure of Ree groups, Algebra i Logika, 24, 1, 26-41 (1985) · Zbl 0581.20025
[14] Praeger, C. E., An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London. Math. Soc., 47, 227-239 (1992) · Zbl 0738.05046
[15] Praeger, C. E., On a reduction theorem for finite, bipartite 2-arc-transitive graphs, Austral. J. Combin., 7, 21-36 (1993) · Zbl 0776.05050
[16] Ree, R., A family of simple groups associated with the simple Lie algebra of type \((G_2)\), Amer. J. Math., 83, 432-462 (1961) · Zbl 0104.24705
[17] Robinson, D. J.S., A Course in the Theory of Groups (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0496.20038
[18] Tutte, W. T., A family of cubical graphs, Proc. Cambridge Philos. Soc., 43, 459-472 (1947) · Zbl 0029.42401
[19] Weiss, R., Über lokal \(s\)-reguläre Graphen, J. Combin. Theory B, 20, 124-127 (1976) · Zbl 0322.05119
[20] Weiss, R., The nonexistence of 8-transitive graphs, Combinatorica, 1, 309-311 (1981) · Zbl 0486.05032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.